Abstract: The “BAYEH's theoretical periodic table of elements” is an original study introduced by the author in Chemistry in 2004. In the past, many scientists and researchers have developed number of periodic tables of elements in order to arrange the atomic elements in the right Columns and groups. The main target was to facilitate the understanding and visualize the atomic elements with some information, but till now no one has developed an ideal theoretical periodic table that can arrange and contain all atomic elements even if they don’t exist in the nature in a sequence of blocks, sequence of atomic numbers and sequence of quantum theory. In this paper the author develop a theoretical periodic table using original theoretical methods and formulae in order to create the ideal theoretical periodic table of elements.

Keywords: Periodic table, 3D periodic table, quantum number, orbital.

1. Introduction
In the past, many scientists and researchers have developed number of periodic tables of elements in order to arrange the atomic elements in the right Columns and groups [1-6]. The modern periodic table is based on quantum numbers and blocks, many problems faced the scientists and researchers when arranging the elements in the traditional and modern periodic tables as placing some elements in the incorrect place as (He) Helium, (La) Lanthanide and many others elements. In additional to that, the relation and sequences do not exist even in the modern periodic tables that are based on the quantum theory. For these reasons and many others reasons, the author develop a new periodic table based on quantum theory, to emphasis the relation between blocks and atomic numbers in very organized sequences, and arranged in a spiral sequence from the first atom (H) hydrogen to an unlimited atoms numbers. In this paper, the new concept of the Bayeh’s theoretical table of element is introduced and few examples are shown and discussed briefly. Figures are drawn with AutoCAD. The Concept of the BAYEH's Theoretical periodic table of Elements is presented in section 2. In the third section, some Advantages of the new periodic table are presented and discussed briefly. Disadvantage of other existing periodic table is presented and discussed briefly in section 4. In the fifth section, a 3D Bayeh’s theoretical periodic table is presented. In the sections 6, a Sample of Existing 3D periodic table is presented. Samples of existing periodic tables are presented in the section 7. Finally, a conclusion about the BAYEH's Theoretical periodic table of Elements is presented in the section 8.

2. Sample of Existing 3D periodic table
These periodic tables are made by Roy Alexander. These are based on the old and standard periodic table, and the disadvantages of both tables are discussed in the section 4 of this article [8].
3. Sample of existing periodic tables

Until now, many scientists and researchers have developed a huge number of periodic tables with different sizes and shapes, in this section some important periodic tables are shown in order to give an idea about the existing ones.

![Figure 1: 3D periodic table by Roy Alexander [8].](image1)

![Figure 1.1: 3D periodic table by Roy Alexander [8].](image2)

Figure 1.2: Example of traditional Periodic table [8].

CLASSIFICATION PERIODIQUE DES ELEMENTS

- **Métaux**
 - États solide à 25°C, sous 1 bar
- **Semi-conducteurs**
 - États solide à 23°C, sous 1 bar
- **Non-métaux**
 - États liquide à 25°C, sous 1 bar
- **Gaz nobles**
 - États obtus par synthèse
- **Lanthanides et actinides**

![Periodic Table Diagram](image3)
Figure 1.3: Example of Extended Periodic table [8].

![Extended Periodic Table]

Figure 1.4: Example of Modern Periodic table [8].

![Modern Periodic Table]
4. Concept of the BAYEH's Theoretical periodic table of Elements

In order to proceed with the new theoretical periodic table, it is necessary to define some important theories and terms that are used to form this theoretical periodic table.

4.1 Bayeh’s theory behind the periodic table

The main target (purpose) of the new theory introduced, is to get all information about the atom by knowing only its atomic number. By using new formulae developed, one can know the period, group, orbital behavior, filling orbital, the number of electron on the outer shell, the sequence of the electron configuration and the ground state electron configuration. On the other hand, one can guess immediately the position of the atom in the periodic table. In this section, only the basic of the theory is introduced, the complete theory will be developed in a separate paper.

• The general formula of the ground state electron configuration introduced by the author is as the following

\[
\begin{align*}
 nS^2 \rightarrow &n \\
 jA_i^{4i-2} \rightarrow &j + n; P(2/3) \\
 i = &\pi + n; P(2/1) \frac{2}{2}
\end{align*}
\]

For example, for \(n=11\) the complete configuration will be as the following

\[
11S^2 \rightarrow \pi 1 \quad jA_i^{4i-2} = 11S^2 \quad 7A_1^{22} \quad 8A_2^{18} \quad 9A_3^{14} \quad 10A_4^{10} \quad 11A_5^6 = 11S^2 \quad 7H^{22} \quad 8G^{18} \quad 9F^{14} \quad 10D^{10} \quad 11P^6
\]

• The relation between the atomic number (Z) and the period of the element

\[Z = 2 + 2 \sum_{i=2}^{N} i^2 p\] \hspace{1cm} (2)

• The number of the electron in the outer shell (peripheral electrons) = \(Z - (2 + 2 \sum_{i=2}^{N-1} i^2 p)\) \hspace{1cm} (3)

The 3 formulae (1), (2), and (3) developed are the basis of the periodic table that gives the necessary information about the atom in order to place it in the correct box in the table.

All these formulae are introduced by the author and they are original formulae that don’t exist before.

• Let’s take an example:

Consider the following atom with \(Z=365\) (Thp) named “Tri-Hex-Pentium”
Claude Ziad BAYEH

BAYEH's theoretical periodic table of elements

\[Z = 2 + 2 \sum_{2}^{N} i^2 p \]
\[\Rightarrow n = \frac{365 - \frac{2}{2}}{2} = 181.5 \]

\[\Rightarrow \begin{cases} 2 \cdot 2^2 + 2 \cdot 3^2 + 2 \cdot 4^2 + 2 \cdot 5^2 + 2 \cdot 6^2 = 180 < 181.5 \\ 2 \cdot 2^2 + 2 \cdot 3^2 + 2 \cdot 4^2 + 2 \cdot 5^2 + 2 \cdot 6^2 + 7^2 = 229 > 181.5 \end{cases} \]

\[\Rightarrow i = 7 \text{ and } p = 1 \text{ then the period is even} \Rightarrow n = 2(i - 1) = 2(N - 1) \Rightarrow n = 12 \text{ the period of the element } (Z = 365) \]

• The number of the electron in the outer shell =

\[Z - (2 + 2 \sum_{2}^{N} i^2 p) = 365 - (2 + 2(2^2 + 2 \cdot 3^2 + 2 \cdot 4^2 + 2 \cdot 5^2 + 2 \cdot 6^2)) \]

\[= 365 - (2 + 2(2^2 + 3^2 + 4^2 + 5^2 + 6^2)) = 3 \text{ electron in the outer shell} \]

• The ground state electron configuration:

\[
\begin{align*}
&nS^2 jA_i^{4i-2} = nS^2 jA_i^{4i-2} = 12S^2 \quad i = \frac{n + 2}{2} \\
&jA_i^{4i-2} = 12S^2 A_i^1 \quad j = \frac{n + 2}{2} \\
&A_i^1 \text{ (number of electron in the orbital } A_7 \text{) } \\
&\text{Orbital } A_7 \\
&\text{Briefly the atom with } Z = 365 \text{ is positioned in the period } n = 12 \text{ and in the group } A_7^1 \text{. }
\]

4.2 Reading the Periodic table

- The horizontal boxes describe the period of the elements (Period 1, 2, 3… (refer to “figure 2.2”)
- The vertical boxes describe the group of the elements according to the quantum theory.
- The colored boxes are elements grouped by family type for example: Nobles gases colored in blue contains the following elements (He, Ne, Ar, Kr…) (refer to “figure 2.3” for the legend)
- The sequence of the atomic number begin in order from the lowest to the highest atomic number i.e.: H(1), He(2), Li(3)… the form of the sequence can be described as a spiral form (refer to “figure 3.2”).
- All elements are grouped by blocks respectively from the left to the right and from the lowest to the highest orbital (S, P, D, F, G, H…) (refer to “figure 3.1”)
- The groups are renamed according to the new method introduced by the author as above. \(A_i^j \) with \(i \) represents the orbital number i.e.: \(A_1 = S; A_2 = P; A_3 = D; A_4 = F \) and \(j \) represents the theoretical group of the element according to the filling orbital.
- The Helium element (He) is placed in the \(A_1^1 \) (or S2) group according to its orbital properties that is similar to all elements in the same column or group.
Figure 2.1: Extract part from the Bayeh’s periodic table.

Figure 2.2: More close from the Bayeh’s periodic table presenting first elements.
5. Advantages of the new periodic table

- This periodic table is based on theoretical methods of quantum theory in which it gives the ideal position of an element in the table. All errors in the nature are not considered in this periodic table.
- It is based on quantum numbers and blocks
- The periodic table is constructed by listing the elements by \(n \) and \(l \) quantum number. (Refer to “figure 3”)
- The blocks begin from the left to the right in order (S-block, P-block, D-block, F-block…) (Refer to “figure 3.1”)
- The relation between blocks and atomic numbers exist with an uninterrupted sequence. (Refer to “figure 3.2”)
- All atomic numbers can be easily placed in the correct place by knowing their period and their orbital.
- The periodic table is constructed by listing the elements by \(n \) and \(l \) quantum number.
Figure 3: periodic table is constructed by listing the elements by \(n \) and \(l \) quantum number

Figure 3.1: Theoretical periodic table arranged by sequence Blocks with respective Groups number.

Figure 3.2: Theoretical periodic table arranged by sequence atomic number.

6. Disadvantage of other existing periodic table
- The old periodic tables are not based on theoretical methods of quantum theory.
- The problem with the mapping is that the generated sequence is not continuous with respect to atomic number, for example: Check out the sequence Ar to K, 18 to 19. (Refer to “figure 4.1”)
- The compression used introduces the well known problem known as a "fence post error". The effect is that: La and Ac: move from f-block to d-block, Lu and Lr: move from p-block to f-block (Refer to “figure 4.2”)
- Most of periodic tables are not based on theoretical methods of quantum theory, therefore many element are not placed in the correct place in the table according to the quantum theory.
- There is no a definite sequence that relate all blocks and atomic numbers in a right way without interruption.
- The relation between blocks and atomic numbers exist with interrupted sequence.

Figure 4.1: modern periodic table arranged by sequence Blocks [8].

Figure 4.2: Mendeleïev version for periodic table with common error [8].

7. Bayeh’s theoretical periodic table in three dimensional (3D) version
The studied Periodic table can be arranged in a 3D shape, the shape is similar to a scale that begins from the top and contains the S-Block, the second step is the P-Block, and the third step is the D-Block and so on... (Refer to “figure 5”)
8. Conclusion
In this paper, the new periodic table is presented and discussed. New and original methods and
formulae are used in order to arrange the atomic elements in an extremely organized manner
and sequence blocks. There are many advantages of the new periodic table that are discussed in this
paper. The new theoretical periodic table is designed and shaped in 3D model. The comparison
between the old and new table give a “credit to the new one”.

References:
pp.1-128 (2007)