Mathematized with the Baca Mendoza system.

Then: \(P = (2, 2, 8, 8, 18, 18, 32, 32, \ldots) \). Series, identical to Rydberg's, which determines the sizes of \(P = (2n^2, 2n^2) \) then:

\[(n) \text{ is the level type, which appears duplicated, it is also the main quantum number} \quad (n) = 1, 2, 3, 4, 5, \ldots, \]

\[(2n^2) \] Generating function of the periods or periodic function itself.

Expression of the law:

Where, \(P \) is the size of the period or the maximum number of elements per period and is an expression of change, since it is postulated as an idealized mathematical generalization of the Periodic Law, from which all types of periodic tables can derive, including the standard table.

To name these pairs of periods, Oswaldo Baca Mendoza [8] devised the word "binod" (See: "Genetic Laws of the Chemical Elements, New Periodic System" Universidad Nacional del Cusco, Peru, 2014, See Annex 1, Baca Mendoza's Periodic tables).

In the article cited in which he tries to demonstrate the beauty and heuristic of the didactic, Mendoza states that this method considering that it led me to consider after having being disfigured and misused by "totalitarian regimes", in detriment of the situation of the sciences, find "formal to the modern period and needs to be corrected: the author believes that the Philosophy of chemistry does not pay enough attention to the Didactics and the didactics and believes that "analytical and dialectical thinking" natural is common to many intellectuals. It is formed as a result of the attention to the Dialectic and the synergetic and believes that: "intuitive and dialectical corrected" this author believes that the Philosophy of chemistry still does not pay enough attention to the didactics and it is one of the main objectives of the author in this work, to show the importance of mathematics in the modern chemical science.

In the search for mathematical relations that regulate the Periodic Chemical Law, the present author has studied the method and the "Genetic Laws of the Periodic scientist Oswaldo Baca Mendoza (1953) [8] (See Annex 1), for his application to the model of Charles Janet (1908) [See Annex 2], finding similarly with the mathematical expression and proving the "quadratic square of positive integer numbers": \(4(1^2, 2^2, 3^2, 4^2, \ldots) + (4, 16, 36, 64, \ldots) \), which Johannes Rydberg [6] had discovered in 1912. Across this range, Rydberg had divided the Periodic System into four "double-periods" (as we might perceive them from the conventional, present-day perspective). The series \(4, 8, 12, 16, 20, \ldots \) is an exponential that emerged from the spectroscopic observation of hydrogen and helium, which was previously changed and distorted (as stated by Hekela) [10] and adapted to the ordinary table of seven periods with the series \(2, 6, 10, 14, 18, 22, \ldots \). The author takes Rydberg’s proposal, since the quantum number \(n \), apparently duplicated into variables, is the same as the period of the binod (n) so that the binod is formed by two contiguous and symmetrical periods that have the same quantum number \(n \), consequently the same number of elements (Fig.1), and is seen to extend to the ordinary table (Fig. 2).

Let \(n \) be the value of an element of the periodic table, and \(Z = n + \frac{1}{2} + \frac{1}{2} \). \(Z \) is the total number of elements per period and is an expression of the change, since it is postulated as an idealized mathematical generalization of the Periodic Law, from which all types of periodic tables can derive, including the standard table.

The author uses the analytical and graphical methods [1] which mathematizes Mendeleev’s law, making the size of the period or the maximum number of elements per period and is an expression of change, since it is postulated as an idealized mathematical generalization of the Periodic Law, from which all types of periodic tables can derive, including the standard table.

\[B = \sum (n) \] And the series equal "quadruple square of positive integer numbers": \(4(1^2, 2^2, 3^2, 4^2, \ldots) + (4, 16, 36, 64, \ldots) \), which Johannes Rydberg [6] had discovered in 1912.

By: Julio Antonio Gutierrez Samanez, Chemical engineer, Master's student of the San Antonio Abad National University of Cusco, Peru.