There are hundreds of periodic tables in web space, but there is only one comprehensive database of periodic tables & periodic system formulations. If you know of an interesting periodic table that is missing, please contact the database curator: Dr Mark R Leach.
Periodic Table formulations from the years 1900 - 1949, by date:
History of the Discovery of the Group 18 (erstwhile Group 0) Elements
John Marks has provided a concise history of the discovery of the Group 18 elements and the element name"Nitron/Radon".
Radioactivity was discovered by Becquerel in 1896 and the Curies noted transferred radioactivity rather like the induction of electric or magnetic charge. Radon was discovered in 1900, by Dorn in Halle; Rutherford discovered thoron in 1899; and Debierne discovered actinon in 1903. The time-line is:
1868 Lockyer observed the spectrum of helium in the solar corona
1894 Ramsay discovers argon
1895 Ramsay isolates helium
1898 Ramsay discovers krypton, neon & xenon
1899 Curie observes an emanation from radium
1899 Rutherford observes an emanation from thorium
1900 Dorn identifies radon
1902 Rutherford & Soddy characterize thoron
1903 Rutherford & Soddy isolate radon
1903 Debierne observes an emanation from actinium
1904 Ramsay names the isotopic emanations exactinio, exradio & exthorio and surmises they are one element, probably an inert gas
So niton (from Latin nitens = shining) was noticed by the Curies in 1899 as an emanation from radium. That same year Rutherford noted an identical emanation from thorium, and in 1903 Debierne discovered the same emanation from actinium. All three ('radon', 'thoron' and 'actinon') were identified as an element by Ramsay in 1904 and characterized by him in 1909.
Ramsay named the element niton after its most prominent property viz. that it glowed in the dark.
With the introduction of Soddy's isotopes, it became clear that: thoron was Nt-220, radon was Nt-222 & actinon was Nt-219.
There are natural traces of other isotopes (e.g. Nt-217, Nt-218) from beta disintegration of astatine. So "radon" was just one isotope of niton.
The foregoing history of niton is uncontroversial and the name niton, Nt, for Z = 86 dates at least from Professor Young´s textbook of stoichiometry in 1908.
"Niton, Nt, for Z = 86, was thus established by its discoverers and accepted by the chemistry (and physics) establishment.
Radon, Rn, is an error perpetuated by IUPAC [amongst its many sins].
"Radon is an isotope. We do not refer to hydrogen as 'protium', so why are we referring to niton as 'radon'?"
Europium, atomic number 63, has a mass of 151.964 au.
Europium was first observed or predicted in 1896 by E.-A. Demarçay and first isolated in 1901 by E.-A. Demarçay.
Chronology of chemically the splitting of ceria (mixed oxides) into the pure rare-earth metals:
From: CRC Handbook on the Physics and Chemistry of Rare Earths, Chapter 248. Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis
by Pieter Thyssen and Koen Binnemans (ISBN: 978-0-444-53590-0)
Periodic Table of Benedicks (1904) with an intraperiodic accommodation of the rare earths. Reproduced from Benedicks, C., 1904. Z. Anorg. Chem. 39, 41:
This formulation was prepared to go with Mendeleev's article predicting that the ether (aether) would be found at the head of group zero in period zero. Also that dashes are left for six elements between H and He.
The predicted elements eka-boron (scandium), eka-aluminium (gallium) & eka-silicon (germanium) are present but the radioactive eka-manganese (technetium) is not. Also, the noble gas elements are on the left hand side of the formulation:
Thanks to Philip Stewart for the corrections and details.
Werner's Arrangement is the first modern looking PT formulation. It appeared before the structure of the atom was known, before the importance of atomic number was recognised and before quantum mechanics had been developed.
Eric Scerri comments that the interesting features are:
A remarkably modern looking formulation in that it separates not only the transition metals but also the rare earths into separate blocks to give what we would now call a "long-form 32 column table". Except Werner guessed wrong as to how many rare earths exist, with the result that he shows 33 groups.
This formulation is also interesting for showing an element between H and He and two elements before H.
Werner computed the average gaps between atomic weights for the second through the fifth periods as 1.85, 2.4, 2.47 and 2.5, respectively.
From this he extrapolated the gap for the first period as 1.5, which coincidentally was also half the difference between the atomic weights of H and He. Werner thus predicted a new element with atomic weight 2.5.
Moseley's work of 1913 showed there were no elements before H and none between H and He.
Mazurs' reproduction (p. 82) of a periodic table formulation by Frank Austin Gooch and Claude Frederic Walker, from Outlines of Inorganic Chemistry, Macmillan, London and New York, p. 8/9, 1905 (ref Mazurs p.188):
Thanks to Laurie Palmer for the tip, and to Philip Stewart for the corrections and details.
From a 1905 textbook by Gooch & Walker: Outlines of Inorganic Chemistry (see the Google Books scanned version pp273) comes an early 'right-step' periodic table. The formulation was reproduced in a 1917 textbook (lower image).
"The arrangement of the elements in three series of eight groups each may be represented by a model in which large and small wooden balls, on a spiral wire, represent the common and rare elements respectively; those balls falling in the same vertical column representing elements in the same groups":
Mendeleev's periodic table of 1906, the last drawn up by Mendeleev himself, and published in the 8th edition of his textbook, Principles of Chemistry. Mendeleev died in 1907.
Mendeleev DI, Osnovy khimii (Principles of Chemistry), 8th edition, 1906, MP Frolova, Saint Petersburg.
H retains the position of 1871
The triad of Cu, Ag, Au is still duplicated.
The noble gases are Group O
This arrangement predates the concepts of atomic number and electron configuration
Lutetium, atomic number 71, has a mass of 174.967 au.
Lutetium was first isolated in 1906 by C. A. von Welsbach and G. Urbain.
Chronology of chemically the splitting of yttria (mixed oxides) into the pure rare-earth metals:
From: CRC Handbook on the Physics and Chemistry of Rare Earths, Chapter 248. Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis
by Pieter Thyssen and Koen Binnemans (ISBN: 978-0-444-53590-0)
From Wikipedia: Antonius Johannes van den Broek (1870-1926) was a Dutch amateur physicist notable for being the first who realized that the number of an element in the periodic table (now called atomic number) corresponds to the charge of its atomic nucleus. The 1911 inspired the experimental work of Henry Moseley, who found good experimental evidence for it by 1913. van den Broek envisaged the basic building block to be the 'alphon', which weighed twice as much as a hydrogen atom.
Read more in Chapter 4, Antonius Van Den Broek, Moseley and the Concept of Atomic Number by Eric Scerri. This chapter can be found in the book: For Science, King & Country: The Life and Legacy of Henry Moseley (Edited by Roy MacLeod, Russell G Egdell and Elizabeth Bruton).
"A curious periodic table which runs from group 12 on the left to group 13 on the right (see below). It seems to have done that way to bring out the pattern in multiples of refractivities i.e. x½ x 4 x 6 x10. The border around the elements in groups 15 to K-Rb-Cs in group 1 denotes this relatively strong regularity among the refractivity values. The L for iodine is a printer's error."
In 1892 Ramsay's curiosity was piqued by Lord Rayleigh's observation that the density of nitrogen extracted from the air was always greater than nitrogen released from various chemical compounds. Ramsay then set about looking for an unknown gas in air of greater density, which – when he found it – he named argon.
While investigating for the presence of argon in a uranium-bearing mineral, he instead discovered helium, which since 1868 had been known to exist, but only in the sun. This second discovery led him to suggest the existence of a new group of elements in the periodic table. He and his coworkers quickly isolated neon, krypton, and xenon from the earth's atmosphere.
This formulation shows an element Np (mass 100 – Ogawa's nipponium), between Mo and Ru, a hypothesised element was later found to be the radioacive element technecium, discovered in 1937.
The formulation also has the Inactive Neutral Gases – the noble gases: St, RaEm, Z1 & Z2.
From Wikipedia: Antonius Johannes van den Broek (1870-1926) was a Dutch amateur physicist notable for being the first who realized that the number of an element in the periodic table (now called atomic number) corresponds to the charge of its atomic nucleus. The 1911 inspired the experimental work of Henry Moseley, who found good experimental evidence for it by 1913. van den Broek envisaged the basic building block to be the 'alphon', which weighed twice as much as a hydrogen atom.
Read more in Chapter 4, Antonius Van Den Broek, Moseley and the Concept of Atomic Number by Eric Scerri. This chapter can be found in the book: For Science, King & Country: The Life and Legacy of Henry Moseley (Edited by Roy MacLeod, Russell G Egdell and Elizabeth Bruton).
van den Broek's periodic table of 1911: Physikalische Zeitschrift, 12 (1911), 490-497); and also a paper in Nature the same year entitled: The Number of Possible Elements and Mendeléff's "Cubic" Periodic System,Nature volume 87, page 78 (20 July 1911)
Henry Moseley (1887-1915) subjected
known elements to x-rays and was able to derive a relationship between x-ray
frequency and number of protons.
From Scientific American:
"It was the clever young English physicist, Moseley, who discovered that the atomic number for each element was the
number of external electrons in the atom.
"With this discovery came a law concerning the X-ray lines of any element in an X-ray target.
"Moseley's law states that the wavelength of these lines is inversely proportional to the square of the atomic number of the element. Therefore, if we know the atomic number of the element we are looking for, we can predict the wavelength of certain lines in its X-ray spectrum.
"If we set up our X-ray spectrograph so as to catch these lines where we expect them to fall, then, if the element is present in the target which we have chosen to use in our X-ray tube, we should know it.
This provides one good way to identify difficult elements, but it is well to have another to use as a check. One of the best of these, and one which is almost as sensitive as the X-ray method, is that of positive ray analysis."
From his paper, The High Frequency Spectra of The Elements, H. G. J. Moseley, M. A.
Phil. Mag. (1913), p. 1024, available here:
Rydberg's Periodic Table in style of Spiral with Four Revolutions
Periodic table in style of spiral with four revolutions circa 1913 (Original design) and 1957 (Date attributed to slide).
This table was originated by Swedish physicist Johannes Rydberg (1854-1919) in 1913 and classified by chemist Edward G. Mazurs as Type IIIB2-1 in his seminal work Types of Graphic Representation of the Periodic System of Chemical Elements (1957). The lower version of the table appears as Figure 63 on page 132 of Mazurs' 1957 publication.
From Wikipedia: Antonius Johannes van den Broek (1870-1926) was a Dutch amateur physicist notable for being the first who realized that the number of an element in the periodic table (now called atomic number) corresponds to the charge of its atomic nucleus. The 1911 inspired the experimental work of Henry Moseley, who found good experimental evidence for it by 1913. van den Broek envisaged the basic building block to be the 'alphon', which weighed twice as much as a hydrogen atom.
Read more in Chapter 4, Antonius Van Den Broek, Moseley and the Concept of Atomic Number by Eric Scerri. This chapter can be found in the book: For Science, King & Country: The Life and Legacy of Henry Moseley (Edited by Roy MacLeod, Russell G Egdell and Elizabeth Bruton).
van den Broek's periodic table of 1911: Physikalische Zeitschrift, 12 (1911), 490-497); and also a paper in Nature the same year entitled: The Number of Possible Elements and Mendeléff's "Cubic" Periodic System,Nature volume 87, page 78 (20 July 1911)
van den Broek's periodic table of 1913: Physikalische Zeitschrift, 14, (1913), 32-41
Ingo
Hackh's spiral periodic table of 1914, from Das Synthetisches System
der Atome, Hamburg, Hephaestos.
Philip Stewart says:
"I believe that Hackh's 1914 spiral is of special interest it is the first spiral to take account of Mosley's atomic numbers, and the first to show successively larger pairs of coils. It is also interesting because H stands alone in the centre. I have only seen Mazurs' redrawn (as usual!) version, but Mazurs gives SciAm Supplement 1919 as one reference."
A periodic table by Arnold Sommerfeld, as an updated construction by Marks & Marks (2021).
John Marks writes:
"The reconstruction of Sommerfeld 1916 is derived from my reading of Henry Browse's translation of the third German edition of his Atomstruktur und Spektrallinien (Methuen 1923). Sommerfeld found the explanation of the greater (d– and f–) and lesser (s– and p–) periods in the solution of Kepler's ellipses using Schwarzschild's relativistic correction, communicated to him from the battlefront of WW1. Sommerfeld considered helium "an exception" but this is only an appearance deriving from defining periods as terminated by inert gases. In fact, the first period begins with hydrogen so the markers of periods are analogues of hydrogen, viz. the halogens."
Stefan Meyer (1872-1949) was an Austrian physicist, no relation of Julius Lothar Meyer. He had a special interest in 'rare earth' and radioactive elements. He published several versions of the periodic table. In this definitive version of 1918, note elements 69-72. Tu I is 'thulium I', Ad is Aldeberanium (Yb), Cp is Cassiopeium (Lu) and Tu II is 'thulium II' (Hf).:
von Bichowsky FR, The place of manganese in the periodic system, J. Am. Chem. Soc. 1918, 40, 7, 1040–1046
Publication Date: July 1, 1918 https://doi.org/10.1021/ja02240a008
"In this curious article, von Bichowsky, a physical chemist (1889-1951), mounted an argument for regarding Mn as belonging to group 8 (see table 1 below) rather than group 7 (table 2). His article has effectively been assigned to the dustbin of history, having apparently gathered zero citations over the past 103 years.
"Items of note in his 24-column table:
While Mn, 43 and 75 are assigned to group 8 they remain in alignment with group 7.
Se is shown as Sc
14 lanthanides, from Ce to Yb, make up group 3a; If La and Lu are included, there are 16 Ln
Gd is shown as Cd
Positions of Dy and Ho have been reversed
Tm and Tm2
Po shown as "RaF"
Ra shown as "RaEm"
Pa shown as Ux2
von Bichowsky made his argument for Mn in group 8, on the following grounds:
by removing the Ln from the main body of the table all of the gaps denoted by the dashes (in table 2) were removed
the eighth group links Cr with Cu; Mo with Ag; and W with Au
the symmetry of the table is greatly increased
the triads are replaced by tetrads and a group of 16 Ln which accords better with "the preference of the periodic system for powers of two"
about eight chemistry-based differences between Ti-V-Cr and Mn, including where Mn shows more similarities to Fe-Co-Ni, for example:
divalent Ti, V, Cr cations are all powerful reducing agents, Cr being one of the most powerful known; divalent Mn, Fe, Co, Ni are either very mild reducing agents as divalent Mn or Fe, or have almost no reducing power in the case of divalent Co or Ni;
metal titanates, vanadates and chromates are stable in alkaline solution and are unstable in the presence of acid whereas permanganates are more stable in acid than alkali; their oxidizing power is also widely different.
I can further add:
Mn, Fe, and Co, and to some extent Ni, occupy the "hydrogen gap" among the 3d metals, having no or little proclivity for binary hydride formation
the +2 and +3 oxidation states predominate among the Mn-Fe-Co-Ni tetrad (+3 not so much for Mn)
in old chemistry, Mn, Fe, Co, and Ni represented the "iron group" whereas Cr, Mo, W, and U belonged to the "chromium group": Struthers J 1893, Chemistry and physics: A manual for students and practitioners, Lea Brothers & Co., Philadelphia, pp. 79, 123
Tc forms a continuous series of solid solutions with Re, Ru, and Os
Moving forward precisely 100 years, Rayner-Canham (2018) made the following observations:
Conventional classification systems for the transition metals each have one flaw: "They organise the TM largely according to one strategy and they define the trends according to that organisation. Thus, linkages, relationships, patterns, or similarities outside of that framework are ignored."
There are two oxide series of the form MnO and Mn3O4 which encompass Mn through Ni. Here the division is not clear cut since there are also the series Mn2O3 for Ti-Cr and Fe; and MnO2 for Ti to Cr.
Under normal condition of aqueous chemistry, Mn favours the +2 state and its species match well with those of the following 3d member, Fe.
Rayner-Canham G 2018, "Organizing the transition metals" [a chapter in] in E Scerri & G Restrepo, Mendeleev to Oganesson: A multidisciplinary perspective on the periodic table, Oxford University Press, Oxford, pp. 195–205
I've also attached a modern interpretation of von Bichowsky’s table. It's curious how there are eight metals (Fe aside) capable of, or thought to be capable of, achieving +8. I am not sure that a table of this kind with Lu in group 3 is possible, without upsetting its symmetry."
"The elements are arranged in order of atomic weights on an eccentric spiral. The four sets of curves include positions of similar elements. The first small turn carries H and He; the remainder of the inert elements and the halogens are on successive small turns in analogous positions.
"On the next larger turn are found the alkali, alkaline-earth, and aluminum family elements.
"The long periods require larger turns and the period containing the rare-earth elements requires the longest turn of all. Elements of the same group are found in the same plane passing through the axis of the spiral."
Black & Conant's Periodic Classification Of The Elements
From N.H. Black NH & J.B. Conant's Practical Chemistry: Fundamental Facts and Applications to Modern Life, MacMillan, New York (1920)
Eric Scerri, who provided this formulation writes (personal communication):
"Notice conspicuous absence of H. And, Conant was the person who gave Kuhn his first start in the history of science at Harvard."
René Vernon tells us that Conant and his coauthor write:
"The position of H in the system has been a matter of some discussion, but it is not of much consequence. It seems to be rather an odd element. Perhaps the best place for it is in group IA as it forms a positive ion." (p. 350)
From A.W. Stewart, Recent Advances in Physical and Inorganic Chemistry, 3rd ed., Longmans, Green and Co., London (1920)
René Vernon writes:
"Stewart discusses the 'forced symmetry' of Mendeleev's table, and the distinction between 'facetious symmetry' (as he calls it) and the actual correlation of facts (as he saw them at that time)."
Extracts:
237. Mendeleev... objected strongly to the
employment of graphic methods of expressing the Periodic
Law, on the ground that such methods did not indicate the
existence of a limited and definite number of elements in each
period.
239. The Periodic Table, as laid down by Mendeleeff in his
writings, exhibits a symmetry which was one of its greatest
assets. For some psychological reason, symmetry has an
attraction for the human mind; and we are always apt to
prefer a regular arrangement to one in which irregularities pre-
dominate. Psychological peculiarities are, however, undesirable
guides in the search for truth; and a careful examination of
the Table in the light of our present knowledge will suffice to
show that it can boast of no such symmetry as we are led to
expect from the text-books of our student days.
For example, owing to the omission of some of the rare
earth elements and by the insertion of blanks, the Table in its
original form attained a very high degree of regularity; but
since there are, as we know from the X-ray spectra results,
only sixteen elements to fill the eighteen vacant spaces in the
Table, it is evident that the symmetry of Mendeleeff s system
is purely factitious.
Further, in order to produce the appearance of symmetry,
Mendeleeff was forced to place copper, silver, and gold in the
first group, although there is no known oxide Au2O and the
stable chloride of gold is AuCl3.
These examples are well-known, and are mentioned here
only for the purpose of enforcing the statement that the
symmetry of Mendeleef's system cannot be sustained at the
present day. Fascinating though its cut-and-dried regularity
may be, we cannot afford to let symmetry dominate our minds
when in actual fact there is no symmetry to be found.
240. The most superficial examination shows that, instead of
being a symmetrical whole, the Table is really pieced together
from a series of discrete sections.
250. The first attempt to arrange all the elements in a periodic
grouping took the form of a three-dimensional model the
Telluric Helix of de Chancourtois and it is not surprising
that from time to time attempts have been made to utilize the
third dimension as an aid to classification. It cannot be said
that much light has been thrown on the matter by these
essays; but some account of them must be given here for the
sake of completeness.
251. The main drawback to the spiral representation appears to
be that in it no new facts are brought to light, and there is no
fresh collocation of the allied elements which might give it an
advantage over the ordinary forms of classification. Also, in
most cases it is more difficult to grasp as a whole.
253 ...if we have to choose between
factitious symmetry and actual correlation of facts, we must
decide in favour of the latter, discomforting though the choice
may be.
255. The following new grouping seems worth considering.
Although it has many good points, it is not to be regarded as
a final solution, but is put forward mainly in the hope that an
examination of it may suggest some more perfect system.
"This version emphasizes periods and electronic configurations.
"There is a long period in which the metals of titanium to copper are found, which he calls transition elements. [This formulation] leaves spaces for the element atomic number 43, technetium, discovered by Perrier Segre in 1937; for the element 72, hafnium, discovered in 1932 by D. Coster and G. von Hevesey; for the element 87, the eka-cesium, which corresponds to francium (Fr), discovered in 1939 by the French physicist Marguerite C. Perey (1909-1975) and, at the end of the group of halogens, for the element 85, the astatine (At), synthesized for the first time in 1940 by American physicists Dale R. Corson (1914-2012), Kenneth R. MacKenzie (1912-2002) and the Italian-American physicist Emilio G. Segrè (1905-1989) at the University of Berkeley (California), bombarding bismuth with particles.
"Bury uses 'A' as the symbol argon, 'Nt' (niton) for radon (Rn) and, the symbol 'Bv' (brevium) for proctactinium (Pa)."
Here is an eight column table with some interesting features.
Main groups 0, Ia, IIa, Vb, VIb, and VIIb, correspond to what we have today:
0 Noble gases
Ia Alkali metals
IIa Alkaline earths
Vb Pnictogens
VIb Chalcogens
VIIb Halogens
Main group IIIa is B-Al-Sc-Y... Ac whereas these days B-Al have been moved over Ga on electronic grounds. This happened despite the fact that the average trend line for chemical and physical properties v Z going down B-Al-Sc-Y... Ac is more regular.
In main group IV, notice how C and SI are positioned in the middle of the cell, unlike their neighbours to either side. The group thus bifurcates after Si into a Ti branch and a Ge branch. This is quite reasonable since there is not much difference in the average trendlines going down either option. In any case, C-Si came to be moved over Ge again on electronic grounds.
He survived the electronic revolution, staying over Ne.
ISOTOPES F.W. ASTON, M.A., D.S.C., A.I.C., F.R.S., London, 1922, Edward Arnold & Co.
Harry F. Tasset writes:
"Francis Aston was a chemist and a physicist who pioneered the discovery of the isotopes. He was a Fellow of the Royal Society and worked with J.J. Thomson. He started his work with the mass spectrometer. His periodic table was published in 1922 and is remarkable because it was one of the first attempts to group the rare earth elements. His success in separating the isotopes was rewarded with the Nobel Prize in Chemistry in 1922."
H.G. Deming used the long periodic table in his textbook General Chemistry, which appeared in the USA for the first time in 1923 (Wiley), and designated the first two and the last five Main Groups with the notation "A", and the intervening Transition Groups with the notation "B".
The numeration was chosen so that the characteristic oxides of the B groups would correspond to those of the A groups. The iron, cobalt, and nickel groups were designated neither A nor B. The Noble Gas Group was originally attached (by Ueming) to the left side of the periodic table. The group was later switched to the right side and usually labeled as Group VlllA.
This version of the periodic table was distributed for many years by the Sargent-Welch Scientific Company, Skokie, Illinois, USA.:
Fajans K., Radioactivity and the latest developments in the study of the chemical elements, trans. TS Wheeler, WG King, 4th German edition, Methuen & Co., London, pp. 116-117, 1923.
René Vernon writes: "An addition to the long list of tables with B-Al over Sc."
I now see Deming used different thickness sloping lines to represent the different degrees of similarity between the main groups and their corresponding transition metal groups.
The line between Li-Na and group 11 is dashed, denoting the weakest relationship.
Be-Mg are in group 2
The line between Be-Mg and group 12 is not dashed, denoting a stronger relationship.
B-Al are in group 3
The line between B-Al and Ga-In-Tl is thicker yet.
When I plot up to 20 chemical properties v Z going down these options I get the following values for the average smoothness of the trendlines:
73.5% for Li-Na-Cu(+2)-Ag(+1)-Au(+3) versus 84% for Li-Na-K-Rb-Cs
70% Be-Mg over Zn versus 85% for Be-Mg-Ca-Sr-Ba
81% for B-Al-Ga-In-Tl versus 88% B-Al-Sc-Y-La
I would have thought the smoothness for the line between Li-Na and Cu would be < 70%, consistent with Deming’s dashed line. But the thickness of the line would depend on what Deming took into account when he drew it. The common wisdom about groups 1 and 11 is that their similarities are: "confined almost entirely to the stoichiometries (as distinct from the chemical properties) of the compounds in the +1 oxidation state." (Greenwood & Earnshaw 2002, p. 1177). Kneen et al. (1972, p. 521) say that, "the differences between the properties of the group IA and IB elements are those between a strongly and weakly electropositive metal." On this basis I follow Deming’s dashed line. I’ve appended some notes about Group 1 and Group 11.
Main group 4 is C-Si-Ge-Sn-Pb
The line between Si and Ti-Zr-Hf is thick
The line between N-P and V is less thick
The line between O-S and Cr is less thick again
The line between F-Cl and Mn is dashed
I have [calculated] a smoothness for C-Si-Ti-Zr-Hf of 86% versus 70% for C-Si-Ge-Sn-Pb. Since Ti shows some transition metal chemistry but not C-Si, it is perhaps plausible to keep C-Si-Ge-Sn-Pb together (as Deming did
).
Deming was a smart author. Nigh on a century later and the metrics check out.
More about group 1 and group 11
There may be a little more to the relationship between Li-Na & Cu-Ag-Au, than is ordinarily appreciated. For example:
The resulting composite "group" has two electropositive metals and three more electronegative metals so its overall nature is more nuanced then purely group 1 or purely group 11
The ionic radii of Li+ and Cu+ are 0.76 and 0.77 Å, and there is at least some discussion in the literature about substitution phenomena (Vasilev et al. 2019, p. 2-15; Udaya et al. 2020, p. 98; Kubenova 2021 et al.)
Group 1 and 11 metal atoms form clusters relatively easily including Au_42+, Ag_64+, Rb_75+, Na_43+ (Mile et al. 1991, p. 134; Wulfsberg 2000, p. 631).
In an organometallic context, Schade & Scheyler (1988, p. 196) wrote that, "There is much evidence that differences between group 1 and group 11 metals are not of principal but rather gradual manner."
Although most nonmagnetic metals exhibit superconductivity it is significant that the Group 1 and 11 metals do not become superconducting at very low temperatures (Rao & Gopalakrishnan 1997, p. 398).
Gold forms intermetallic compounds with all alkali metals (Schwerdtfeger et al. 1989. p. 1769)
References
Greenwood NN & Earnshaw A 2002, Chemistry of the Elements, 2nd ed., Butterworth Heinemann, Oxford
Kubenova et al. 2021, "Some thermoelectric phenomena in copper chalcogenides replaced by lithium and sodium alkaline metals", Nanomaterials 2021, vol. 11, no. 9. article 2238, https://doi.org/10.3390/nano11092238
Mile et al. 1991, "Matrix-isolation studies of the structures and reactions of small metal particles", Farady Discussions, vol. 92, pp. 129–145 (134), https://doi.org/10.1039/FD9919200129
Rao CNR & Gopalakrishnan J 1997, New Directions on Solid State Chemistry, 2nd ed., Cambridge University Press, Cambridge
Schade C & Schleyer PVR 1988, "Sodium, potassium, rubidium, and cesium: X-Ray structural analysis of their organic compounds", Advances in Organometallic Chemistry, vol. 27, Stone FGA & West R (eds), Academic Press, San Diego, pp. 169–278
Schwerdtfeger et al. 1989, "Relativistic effects in gold chemistry. I. Diatomic gold compounds.", The Journal of Chemical Physics, vol. 91, no. 3, pp. 1762–1774. https://doi.org/10.1063/1.457082
Udaya et al. 2020, Metal sulphides for lithium-ion batteries, in Inamuddin, Ahmer & Asiri (eds), Lithium-ion batteries: Materials and applications, Materials Research Forum, Millersville PA, pp. 91–122
Vasiliev AN et al. 2019, Low-dimensional Magnetism, CRC Press, Boca Raton
Wulfsberg 2000, Inorganic chemistry, University Science Books, Sausalito, CA
Ida Noddack studied the periodic table in the first half of the 20th century and was the co-discoverer of the last non-radioactive element to be isolated, rhenium. Later she worked on nuclear fission. In 1925 presented Noddack her formulation:
From Ida Noddack and the Missing Elements by Fathi Habashi, Education in Chemistry (March 2009)
This 1925 table has the Heavy Metals spread out, and the Rare Earth Elements (fifteen, including La and Lu) withdrawn into a box that is divorced from the body of the table. Ce, Gd, Yb form a vertical triad.
Th is assigned to Group IV below Hf.
From Michael Laing's paper: A Revised Periodic Table with the Lanthanides Repositioned, Found. Chem. (2005) 7: 203–233
"The unfolded tower arrangement appears much like a modernised Chauvierre chart cut on a line between Ni and Cu, Cu, with the right part fitted to the left in order of increasing atomic numbers.
The rare-earth elements, however, are placed on a novel accordion-like folded strip with ends made secure just below Xt and between Ba and Hf.
The author describes in detail the method of folding the chart into a tower-like cylindrical model. H is folded back to show its lack of relationship other groups of elements. In the space for each symbol, electron arrangements and isotopes are also enumerated."
Arnold Sommerfeld diagram appears in an issue of
Memoirs and Proceedings of the manchester Literary and Philosophical Society for 1925-26.
volume 70, p. 141-151.
Eric Scerri writes:
"The electron groupings are not exactly the same as what is believed to exist today but it amounts to the same order of filling.
For example p orbitals were thought to consist of two groups of 2 and 4 electrons, rather than 2, 2, 2 as believed today.
Similarly d orbitals were thought to be formed of two groups of 4 and 6 electrons.
With that in mind you will see that Sommerfeld was the first to propose an aufbau filling system: The occupation of 4s before 3d or as represented here the 2 electrons in orbit 11 followed by the 4 and 6 from orbits 3,s and 3,3.
"Sommerfeld does indicate sub-shells. They are just not the same groupings as the current ones.
For example 2,1 and 2,2 indicates subshells within the 2nd main shell. Similarly the 3rd shell is presented as 3,2 and 3,3. The totals are of course the same, namely 6 for what we now call p orbitals and 10 for what we call d orbitals.
All this came before the discovery of the 4th or spin quantum number.
This is in keeping with Bohr's original assignment of shells and sub-shells.
"The discovery of sub-structure to electron shells was not an 'all or nothing' development, but a gradual and almost organic evolution."
"Model demonstrating the telluric screw periodic system of Alexander-Emile Beguyer de Chancourtois proposed in a paper published in 1862.
"This model, made by the Science Museum in 1925, provides a rare physical realisation of arguably the earliest periodic system of for the elements. It was devised by the French geologist, Alexander-Emile Beguyer de Chancourtois in 1862, 7 years prior to Dmitri Mendeleev's periodic table.
"De Chancourtois arranged the elements in the order of their atomic weights along a helix which was traced on the surface of a vertical cylinder, with an angle of 45 degrees to its axis. The base of the cylinder was divided into 16 equal parts (the atomic weight of oxygen), and the lengths of the spiral corresponding to the weights of the elements were found by taking the one-sixteenth part of a complete turn as a unit":
The
Andreas von Antropoff periodic table, restored
by Philip Stewart on the basis of the article 'Eine neue
Form des periodischen Systems der Elementen'. Zeitschrift
für angewandte Chemie 39, pp. 722-725, 1926:
This
formulation has a satisfying balance compared to most other
tables and was the most popular wall-chart in German schools
for many years but quickly disappeared after von Antropoff
was disgraced in 1945 for his Nazi activities: he presided
over the raising of the swastika over Bonn University in
1933. But he put science above politics and was a stout
defender of Einstein's theories.
A recently restored wall version of the von Antropoff formulation from the University of Barcelona, origionally painted in 1934 (thanks to Philip Stewart & Claudi Mans):
Perhaps
it was the disgrace of von Antropoff which led Linus Pauling
to borrow his design, without acknowledgement, for his 1949
book, General Chemistry (and subsequently in later editions
of The Chemical Bond).
The PT below is scanned in from Pauling's The Nature of The Chemical Bond, 3rd ed., 1960:
Vallance RH & Eldridge AA, A Text-Book of Inorganic Chemistry, Vol. VII, Part III, Chromium and its Congeners, JN Friend (ed.) Charles Griffin & Company, London (1926), front paper.
"I can't recall seeing a table in which the lanthanoids were allocated in quite such a manner: across seven groups. And, 16 such lanthanoids shown. Even curiouser, Argon = A; xenon = X; are shown in group 0. Wonderful nomenclature from nearly a century ago."
R.H. LeRoy, Teaching the Periodic Classification of Elements, School Science and Mathematics 1927, 27: 793-799. This formulation thulium in group IC and has the actinides in the C groups, analogous to the lanthanides, two decades before Seaborg.
René adds:
"This 1927 formulation has several remarkable features.
"The lighter and heavier lanthanides and actinides are shown in numbered C groups i.e. C4, C5, C6, C7 and C1, C2, and C3. The 14 remaining elements between C7 and C1 are labelled as transition elements, analogous to the old chemistry notion of the ferromagnetic and platinum metals in IUPAC groups 9 to 11 being labelled as transition elements. There is no known Tm(I) although this would not be inconceivable. Nd is in group C6, which doesn't quite work since there is no Nd(VI) although such an oxidation state is not inconceivable given the existence of Pr(V). in group C7, Pm(VII) is not known. For the actinides, Md(I) has been reported but not confirmed.
"B-Al-Sc-Y-La-Ac are shown as main group metals; that would be consistent with their chemistry. While Sc-Y-La-Ac are routinely classified as transition metals their chemistry is largely that which would be expected of main group metals following the alkaline earths in IUPAC group 2.
"The author refers to the noble gases as 'transitional'. The noble gases bridge the most reactive groups of elements in the periodic table – the alkali metals in group I and the halogens in group VII. That's a concept that's rarely referred to these days even though it's still quite valid.
"Ga-In-Tl are shown as B3 metals, falling just after Zn-Cd-Hg in group B2, and Cu-Ag-Au in group B1. That doesn't work for Ga etc, which are nowadays regarded as main group metals.
"H is shown floating above the A elements, and in the transitional zone, with links to F and to Li."
Thanks to John Marks for the tip, and to René for the comments/analysis!
Janet's Helicoidal Classification, essentially his left-step formulation in its spiral version (ref. Charles Janet, La Classification Hélicoïdale des Éléments Chimiques. Beauvais: Imprimerie Départementale de l'Oise. 1928). Information supplied by Philip Stewart:
There are the three versions of Janet's left step PT. He tried out versions I and II in his April 1928 paper, and rejected them in favour of version III in his paper of November of the same year. Each one was derived from a helix drawn on nested cylinders. Information supplied by Philip Stewart. Click each image for a larger image:
From in The Helicoidal Classification of the Elements, Chemical News vol. 138, 21 June 1929, Fig. XI, p. 392:
Philip Stewart points out that this formulation is an 'end on' view of the Janet Cylinder or Three-Dimensional Spiral-Tube System formulation, and the term "lemniscate" comes from Mazurs.
This table is from the book "Practical Inorganic Chemistry" Publisher EH Riesenfeld Labor, Barcelona (1950). It is a reprint of the second edition (1943) which in turn is a translation of a German edition, its seventh edition in 1928. This suggests that Riesenfeld is himself the author of it.
It is a pre-Seaborg table in the sense that the actinides are known throughout the period July. It also does not include the Tc since it was discovered in 1937. These facts support the dating of the table. But the most interesting thing about it is that to make the separation between subgroups and major groups Be cut after the first period and after the Al in the second. Which leaves isolated in group B without any element 2b below it:
"Corbino saw what Janet failed to see: If blocks shifted by corresponding value of quantum number l, then the rows represent electronic shells and Janet saw what Corbino fained to see, namely the Janet rule, also known as Madelung rule. Both used rectangular boxes, but neither noticed the perimeter rule."
Janet produced six papers, in French, which are almost unobtainable as he had them privately printed and didn't distribute them properly. The shell-filling diagram dated from November 1930, six years before Madelung. Note that Janet uses Bohr's radial quantum number, k, which is l+1. In the text he formulates the n+k-1 rule. Information supplied by Philip Stewart.
"MR. ROY GARDNER gave an interesting paper on A Method of Setting out the Classification of the Elements at a recent meeting of the New Zealand Institute. The paper included the accompanying Table, which shows the distribution of electrons into groups corresponding to the principal quantum numbers for all the elements and at the same time preserves the most essential features of the two-dimensional arrangement of Mendeleef. Elements having the same complete groups (that is, all stable groups of 8 or 18) are placed in the same horizontal row, and the vertical columns include elements with the same number of electrons in the incomplete outer groups. The electronic configurations are those given by Sidgwick ("Electronic Theory of Valency", 1927). An asterisk marks elements for which the 'normal' atom is thought to have only one electron in the outermost group, but as practically all these give divalent ions, the point is of minor interest chemically. Distribution of electrons into k-subgroups is unnecessary; these have at present little significance for chemical purposes, and in any case the subgroups are considered to be filled in order to the maxima 2, 6, and 10."
In this table Gardner emphasises the existence of four types of elements:
those with all "groups" complete
those with one incomplete group
those with two incomplete groups (transition elements)
those with three incomplete groups (rare earth elements)
The upper limits of existence of covalencies of 8, 6, and 4 are marked by heavy horizontal lines.
Note:
there are nine groups of d-block elements [as we would now call them], and but 13 f-block elements
La and Lu are treated as d-block elements
while Yb is counted as an f-block element it was later realised (1937) that the 4f shell is full at Yb, hence it is not clear where Gardner would have placed it (Yb)—seemingly in the 0 column
R.H. LeRoy, Teaching the Periodic Classification of Elements, School Science and Mathematics 1927, 27: 793-799. This formulation thulium in group IC and has the actinides in the C groups, analogous to the lanthanides, two decades before Seaborg.
René adds:
"This 1927 formulation has several remarkable features.
"The lighter and heavier lanthanides and actinides are shown in numbered C groups i.e. C4, C5, C6, C7 and C1, C2, and C3. The 14 remaining elements between C7 and C1 are labelled as transition elements, analogous to the old chemistry notion of the ferromagnetic and platinum metals in IUPAC groups 9 to 11 being labelled as transition elements. There is no known Tm(I) although this would not be inconceivable. Nd is in group C6, which doesn't quite work since there is no Nd(VI) although such an oxidation state is not inconceivable given the existence of Pr(V). in group C7, Pm(VII) is not known. For the actinides, Md(I) has been reported but not confirmed.
"B-Al-Sc-Y-La-Ac are shown as main group metals; that would be consistent with their chemistry. While Sc-Y-La-Ac are routinely classified as transition metals their chemistry is largely that which would be expected of main group metals following the alkaline earths in IUPAC group 2.
"The author refers to the noble gases as 'transitional'. The noble gases bridge the most reactive groups of elements in the periodic table – the alkali metals in group I and the halogens in group VII. That's a concept that's rarely referred to these days even though it's still quite valid.
Ga-In-Tl are shown as B3 metals, falling just after Zn-Cd-Hg in group B2, and Cu-Ag-Au in group B1. That doesn't work for Ga etc, which are nowadays regarded as main group metals.
"H is shown floating above the A elements, and in the transitional zone, with links to F and to Li."
Thanks to John Marks for the tip, and to René for the comments/analysis!
There are split blocks everywhere in Bjerrum's periodic system: s once; f once; d twice; p twice.
As per old chemistry: B and Al are over Sc
The group numbering is interesting: eight groups and eight sub-groups
Bjerrum says the metals fall naturally into two groups: the light metals with a density below 4 gm/cm^3; the heavy metals with a density above 7 gm/cm^3, many of which form coloured salts
Bjerrum refers to the transition metals as being those in subgroups 8a, 8b and 8c
Chicago Museum of Science & Industry Periodic Table
The [Chicago] Museum of Science and Industry (MSI) opened to the public in 1933. The building that the Museum of Science and Industry now occupies however, has a rich history going back to its construction for the 1893 World's Columbian Exposition.
The Special Exhibits Hall – Alexander Graham Bell Memorial Suite – had a huge Periodic Table with the ninety-two elements arrayed in colorful and orderly fashion. These "building blocks of the universe" stood beneath the great central dome of the Museum.
Steve Rosengard, Assistant Curator, Collections Department, Museum of Science & Industry writes:
"After doing a bit of digging, it looks as though the original table was in the Great Hall within the Hall of Science at the 1933-34 World's Fair. Because of prior negotiations, virtually everything inside the Hall of Science was designed by MSI draftsmen so that it could be re-used in the Museum afterwards. The records show that MSI took in the table but had it redesigned and rebuilt by Shaw Naess and Murphy (E.M. Weymer Co. was a subcontractor) in 1938-39.
One of the pages from the booklet from the Fair states the '[p]]articular credit is extended to Dr. B.S. Hopkins, of the University of Illinois, for assistance in arranging the collection.' The term assistance is a bit misleading because from the other papers in the file, it's very clear that Hopkins basically did the design entirely on his own. In terms of funding, I would assume that Rand McNally made some contribution beyond the loan of the globe on top since it was known as the Rand-McNally Periodic Table, but I have found no records supporting this."
The Crookes three dimensional periodic table of 1898, here, has been adapted with the addition of two elements 'Adyarium' and 'Occultium' between hydrogen and helium, as presented to Theosophical Society (see bottom right hand corner).
INTRODUCTION TO THE THIRD EDITION
By C. JINARAJADASA
This work contains a record of clairvoyant investigations into the structure of matter. The observations were carried out at intervals over a period of nearly forty years, the first in August 1895 and the last in October 1933. The two investigators, Annie Besant (1847-1933) and C. W. Leadbeater (1847-1934) were trained clairvoyants and well equipped to check and supplement each other's work.
Method of Investigation: The method is unique and difficult to explain. Many have heard of the word "clairvoyance" (clear-seeing), connoting the cognition of sights and sounds not perceived by ordinary people. In India the term Yoga is sometimes related to faculties that are beyond ordinary cognition. It is stated in Indian Yoga that one who has trained himself "can make himself infinitesimally small at will". This does not mean that he undergoes a diminution in bodily size, but only that, relatively, his conception of himself can be so minimized that objects which normally are small appear to him as large. The two investigators had been trained by their Eastern Gurus or Teachers to exercise this unique faculty of Yoga, so that when they observed a chemical atom it appeared to their vision as highly magnified.:
"The article's Fig. 1 is the first [formulation] (to my knowledge) which contains a
"classical" representation of the periodic system in which an Actinoide series is
placed beneath the Lanthanoides and not beneath the d block elements:
Brazilian Version of The Hubbard Periodic Chart Of The Atoms
A Brazilian Version of the American classic Henry Hubbard Periodic Chart Of The Atoms from a lecture theater in Rio, rediscovered by Martyn Poliakoff of PeriodicVideos.com and The University of Nottingham. From the early 1930s:
Ma – Masurium (43) Disputed claim to discovery of technetium.
Cb – Columbium (41) Former name of niobium
Ab – Alabamine (85) Discredited claim to discovery of astatine.
Il – Illinium (61) Discredited also
Sa – Samarium (62) Current symbol is Sm
Sp – Spectrium (70) Suggested name for ytterbium
Cb – Columbium (41) Former name of niobium (also called Pelopium)
The current Sargent
Welch version of the Henry Hubbard Periodic Table:
The periodic table of White shows the normal state electronic configurations, from H.E. White. Introduction to Atomic Spectra. New York: McGraw-Hill, 1934,
p. 85, Table 5.4..
Helium is clearly associated with H, and placed above Be in accord with the s2 electron configuration of the free atom.
"The usual relationships between analogous elements are preserved and are in fact emphasized by this new arrangement. The only missing regularity is the natural succession of atomic, numbers, but all periodic classifications have to sacrifice it on account of the rare earths. Moreover, it can easily be restored by reading the horizontal lines n the order indicated by the numbers written on the left of the heavy frame line. Each horizontal line is limited by the frame of the table. For instance, K and Ca on the one hand, Cu and Zn on the other hand, form two distinct horizontal lines, as shown by the different numbers given to these groups. They are at the same level because the valence electrons have the same quantum numbers."
The shape of the table is presented by Bohr effect of considering the properties of the elements as simple substances and for reactions to occur with the intervention of such substances. But for the study of compounds and reactions that occur between them, the key factor is the electron configurations of atoms in states of valence to them on the given compounds.
It follows that a more complete picture of the periodic table would be when you take into account the peculiarities of atoms in both its neutral state and in all its particular valence states. This is the proposal of Boris Nekrasov, a member of the Academy of Sciences in Moscow.
Nekrasov distinguishes three types of analogies between elements Total analogs are those in which the analogy is shown in all its valence, all analogs compared to the valence valences except for the group corresponding to the number that can be called characteristic and analogous to the valence characteristic .
Thus, in the table shown here distinguish the elements entirely analogous joined by continuous lines, such as Na and K.
Those analogies in all except the characteristic valences joined by dotted lines. This is the case of Na and Cu in both cases if you lose an electron (valence feature) your setup is different. In the first case is 8 (1s2, 2P6) and the second 18 (3s2, 3p6, 3d10).
Lastly presenting exclusively analogies valence are connected with dashed lines. This is the case both S and Cr +6 elements have their valence electron configuration similar in the last layer 8 (2s2, 2p6) for the S and 8 (3s2, 3p6) for Cr.
Students of chemistry are often confused why the orbitals fill with electrons: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6... etc., because the 3d10 seems to be 'out of sequence'.
This 'out of sequence' difficulity is nicely explained if the orbitals are arranged in a slightly different way:
The aufbau principle states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. For example, the 1s shell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible.
The order in which these orbitals are filled is given by the n + rule, also known as the Madelung rule (after Erwin Madelung), the Janet rule or the diagonal rule.
Orbitals with a lower n + value are filled before those with higher n + values. In this context, n represents the principal quantum number and ? the azimuthal quantum number. The values = 0, 1, 2, 3 correspond to the s, p, d and f orbital lables.
Julio Gutiérrez Samanez writes:
"I send you the diagram below that reconciles quantum mechanics (diagram for filling the electronic cells) with the Janet table or LSPT. Explaining the duplication of periods with the duplication of the quantum number n, and the introduction of Tao (T) spin of the level or spin of the period, which explains the parity of the symmetric periods."
Libedinski's Periodic Classification of The Elements
Simón Libedinski: PERIODIC CLASSIFICATION OF THE ELEMENTS, from his book: Dialectical Materialism, in Nature, in Society and in Medicine, Ediciones Ercilla, Santiago de Chile, 1938, pp 56-57:
"Mendeleev's Table, like that of Werner and others, are not, however, more than flat projections of the actual ordering of the elements. There is as much difference between Mendeleev's Table and the real group as there is between the planisphere and a rotating globe. A rational representation, starting from the simplest element – the negative electron –, would be a spiral line that, surrounding said central point, first gave a small turn, touching only two bodies: hydrogen and helium. From here it would jump to a much larger orbit, in which it would touch eight bodies and then another equal, also of eight. From here, another jump to a much larger orbit, comprising eighteen bodies, and then another equal; from this point one jumps to another orbit, again augmented, comprising thirty-two bodies (including rare earths); and when this round is over, the last one begins, to vanish a short distance.
"In the dialectical grouping of the elements, which I have the satisfaction of exposing, the classic arrangement of the same is respected. Only the arrangement changes, which instead of being rectilinear, is spiral.
So I managed to suppress the anomaly of the double columns, and comfortably incorporate the important group of rare earths. I can not give my graphic the name of Tabla, because it is just the opposite: it aims to give the idea of ??space, and of movement in space.
The double columns of the Classic Table can be found here as well, but only if you look through the whole, considered as a planetary system of conical shape, with the electron at the vertex. Effectively: column 1 coincides, through space, with column 1a; column 4 with column 4 bis, etc.
The dialectical grouping also allows us to easily appreciate the remarkable dialectical character of the properties of matter: these properties are repeated periodically. These are the "returns" to qualities or previous properties, but not exactly equal to those, but only similar: and this resemblance, only to a certain extent. The difference is that that quality, those properties or some characteristic, are exalted to each dialectical return."
Contributed by Julio Antonio Gutiérrez Samanez, Cusco, Peru, March 2018 (using Google Translation)
From his paper, Periodicity Patterns of The Elements in J. Chem. Educ., 1939, 16 (7), p 335, K. Gordon Irwin presents a Periodic Chart of the Elements in Spiral Form. The paper is used to justify this formulation in terms of periodicity:
L.S. Foster, "Why not modernise the textbooks also? I. The periodic table", Journal of Chemical Education, vol. 16, no. 9, pp. 409–412, https://pubs.acs.org/doi/10.1021/ed016p409
Foster writes:
"The [above] modern periodic table is simply an orderly array of the elements with all unnecessary ornamentation omitted, has been found highly satisfactory for instructional purposes.
"The transitional elements, with two unfilled electron shells, are separated from the non-metallic elements.
"The rare-earth elements, defined as those with three incomplete electron shells, are shown to be those of atomic numbers 58 to 70, while La and Lu, which have only two incomplete electron shells are classified as transitional elements.
"Copper, silver, and gold act as transitional elements except when the state of oxidation is one."
René Vernon writes:
Foster couldn't show the coinage metals – with their full d10 complements – as transitional elements, but by adding a broken line around them he was showing they had the capacity to act as if they were.
I tried to work out how he distinguished La & Lu from Ce to Yb.
Foster seems to be saying that La 5d1 6s2, has incomplete 5th and 6th (ie. 6p) shells.
Same for Lu 4f14 5d1 6s2 having incomplete 5th and 6th shells. Whereas, for example, Ce 4f1 5d1 6s2 has incomplete 4th, 5th and 6th shells.
Presumably this was in the years before the fact that the 4f shell became full at Yb was widely appreciated. So, strictly speaking, group 3a should have read:
On the other hand, Yb3+ has an f13 configuration, so it does meet his three unfilled shells criterion. Had he known, he probably would've put a broken line around Yb to indicate its full f14 complement but that it normally acted as a rare earth, with an incomplete 4f shell; whereas neither La nor Lu have this capacity.
Good to see Foster put so much thought into organising his table, and his experience with using it for instructional purposes.
Van Spronsen does not mention Forster's table.
Mazurs has a reference to Foster's table but lumps it in with the other medium-long tables, not appreciating its subtlety.
George Gamow is well known for his Gamow 1961 ribbon formulation. It appeared in a 1948 book: One, Two, Three... Infinity, but it first appeared in 1940 in 'The Birth and Death of the Sun' (Viking, N. Y.).
Conal Boyce writes:
"The 1940 version of the wound ribbon (in The Birth and Death of the Sun, Figure 12) appears to be the earliest. Gamow re-used it in two editions of another book, 1, 2, 3...Infinity (1948, 1953), as is. He redrew it from scratch for the 1961 edition of 1, 2, 3...Infinity, adding about a dozen new items, notably Np through No, on a new loop. (Unfortunately, in the 1961 version he introduced 4 or 5 goofy errors, including the non-existent 'Fa' for Ga, and a misplaced 'Ba' where Sr belongs, etc.) Most significantly, in another one of his 1961 publications, a book entitled The Atom and Its Nucleus, he swapped the left and right halves of the diagram (see pp. 10-11, Figure 2), so that the noble gas column could be seen as the backbone of the whole structure. He calls it out as such on page 9."
"A mathematical expression of the periodic law was put forward in 1937 in an article by Chin-Fang Hsueh and Ming-Chien Chiang: J Chinese Chem Soc, 5, 263 (In English.) They derived a property equation from which the numerical magnitude of a property P is related to the atomic number Z of the element in question in terms of valence V, a function of the periodic factor y, the principal quantum number n, and two parameters a and p, which are constants for a given family of elements but different for different families."
In his Priestly Medal Address, The Periodic Table: Tortuous Path to Man-Made Elements printed in C&EN April 16, 1979 and reprinted in Modern Alchemy: Selected Papers of Glenn T. Seaborg (1994), page 181, Glenn Seaborg describes how the extension of the PT, caused the discovery of the transuranic elements, plutonium and neptunium, resulted in a new "uranide" group.
The formulation below is the working (and at the time top-secret) formulation used by the Manhatten atomic bomb project. The Lawrence Berkeley Laboratory internal reference number for this document is XBL 798-2509.
Like the 1939 formulation, XBL 769-10601, the formulation below erroneously predicts positions for the heaviest elements:
Published by Paneth in 1942 in an article in Nature in which he suggests that newly discovered elements such as Z = 43 should be given names by their discoverers. The other highlighted elements (below) had also not yet been named.
Element 43 had been discovered 9 years earlier but had not been given an official name because there was reluctance to consider synthetic elements on the same footing as naturally occurring ones. This changed as a result of Paneth's article.
The periodic table that appears on the inside of the front cover of:
Barber, H.H., Taylor, T.I. Semimicro Qualitative Analysis, Harper, 1942. Click here for a larger version.
Conal Boyce writes:
"This is actually the Gardner/Mazzucchelli 1930 formulation, a colored version can be found here in the database. The periodic table below is found on the inside cover of Barber & Taylor's Semimicro Qualitative Analysis (1953[1942]), it is printed without attribution or source. Thanks to Philip Stewart for identifying the source.":
Kipp (& Mazurs') Periodic Table in Style of Spiral and Plane Lemniscate
Kipp, Friedrich, and Edward G. Mazurs. "Periodic Table in Style of Spiral and Plane Lemniscate". Glass, circa 1942–1957. Edward G. Mazurs Collection of Periodic Systems Images, Box 1. Science History Institute, Philadelphia. https://digital.sciencehistory.org/works/nz806022g
Periodic table in style of spiral and plane lemniscate 1942 (Original design) circa 1957 (Date attributed to slide).
The Segrè chart of elements and isotopes arranges atomic nuclei by numbers or protons and numbers of neutrons and is a table of nuclides. There are various ways the axes can be arranged. From elsewhere in this chemogenesis web book:
Seaborg describes how "the theory was advanced that [the] new elements heavier than than actinium might constitute a second series similar to the series of 'rare-earth' or 'lanthanide' elements":
Promethium, atomic number 61, has a mass of 145 au.
Radioactive element: Pm is only found in tiny amounts in nature. Most samples are synthetic.
Promethium was first observed or predicted in 1942 by S. Wu, E.G. Segrè and H. Bethe and first isolated in 1945 by Charles D. Coryell, Jacob A. Marinsky, Lawrence E. Glendenin, and Harold G. Richter.
"To overcome the drawbacks presented by the various tables in rows and columns into which the classification of chemical elements is usually inserted, the author proposes a diagram in space, having the form of a double pyramid constructed according to a simple arithmetic law, inspired by Greek surveyors. Under these conditions, all the bodies belonging to the same chemical family are placed on the same column, and all those which have similar physical properties (magnetic, electrical, radioactive, crystallographic, rare earths, etc.) are grouped together. This same diagram also makes it possible to represent the electronic structure of the atoms, the quantified states of the electrons, the energy levels and the spectral lines of hydrogen. Perhaps spectroscopists will be able to use it to also represent the lines of other bodies."
"Achimov's system took the form of a cross-section of a pyramid. He based his system on the principle that the lengths of the periods and the analogies in properties between the elements of these periods must be clearly demonstrated."
Achimov EI 1946 Zhur. Obshchei Khim., vol. 16, p. 961
"The numbers below each element symbol refer to the crystal: 1 = FCC, 9 = graphite structure, 11 = orthorhombic, etc. Extra numbers are for structures at higher temperatures.
"The wriggly lines between groups 3 and 4, and 11 and 12 refer to a gradation between the classes involved. Wikipedia calls these linking or bridging groups
"Harrington's class names are novel. [Who would have thought of the elements of groups 1 to 3 as being called the "salts of electrons"?] Then again, "in view of the extensive role that electrons play as anions" Dye (2015) asked: "where should electrons be placed in the periodic table?" (Note: In 1946 Achimof tried answering this, with an electron as element -1 above H and a neutron as element 0 above He.)
"Aluminium appears in group 3 and group 13 since, according to Harrington, it has the crystalline structure of a true metal. This is not quite true since its crystalline structure shows some evidence of directional bonding.
"For the transition metals as "wandering bonds", Harrington writes that the metallic bond is spatially undirected and that it may operate between any given atom and an indefinite number of neighbours" (p. 145). Since A-metals are better called, in his mind, "salts of electrons" [and B-metals show signs of significant directional bonding] the transition metals are therefore called by him as wandering bonds. This becomes confusing, however, given d electrons in partially filed d-orbitals of transition metals form covalent bonds with one another.
"Counting boron as a pseudo metals looks strange.
"Germanium is counted as a metal: "...the electrical conductivit[y]... [is] sufficiently high to show that the outer electrons are very loosely held and the linkage must be partly metallic in character." (p. 148). In fact the electrical conductivity of high purity germanium, which is a semiconductor, is around 10–2S.cm–1. Compare this with antimony, at 3.1 x 104S.cm–1
"Tin has brackets around it to show its "renegade" status, "with its white form behaving largely as would a True Metal, whereas its grey form is more non-metallic than metallic." White tin actually has an irregularly coordinated structure associated with incompletely ionised atoms.
"Thallium and lead have brackets around them since their crystalline structures are supposedly like those of true metals. This is not quite right. While both metals have close-packed structures they each have abnormally large inter-atomic distances that have been attributed to partial ionisation of their atoms.
"The B-subgroup metals are divided into pseudo metals and hybrid metals. The pseudo metals (groups 11 and 12) behave more like true metals than non-metals. The hybrid metals As, Sb, Bi, Te, Po, At – which other authors would call metalloids – partake about equally the properties of both. According to Harrington, the pseudo metals can be considered related to the hybrid metals through the carbon column.
"The location of the dividing line between metals and nonmetals, running as it does through carbon to radon is peculiar. The line is usually shown running through boron to astatine."
One the major features is that only two groups, at Si and Y, are considered to be 'truly' branched and that the latter 'is not usually considered in this manner'
The smaller symbols, such as V under P, aren't necessary but are 'merely offered for consideration'
Si shows a greater resemblance to Ge than it does to the closer Ti, while Y similarly shows greater resemblance to Lu than to La
Stedman first drew his first version of this table sixteen years ago (= 1931)
"In this curious 18-column table, showing the crystalline structures of the elements, Ageev locates the predominately non-metallic groups on the left and the remaining groups on the right.
"It's odd that he located boron and aluminium on the far left over gallium, rather than over scandium. I suppose he did this so that gallium, indium, and thallium would not be mistaken for d-block metals.
"Reading from left to right then, Ageev's table could be said to be made up of five blocs:"
[1] the nonmetallic bloc
[2] the alkaline bloc
[3] the inner transition bloc
[4] the transition metal block
[5] a post-transition metallic bloc
The main groups are recognisable, with the exception of group 3 as B-Al-Sc-Y-La. The other side of the table lists B-Al as being analogous to Sc-Y-La, rather than Ga-In-Tl.
The former option works better than the latter in terms of the quantitative smoothness of chemico-physical trend lines going down the group."
Linus Pauling borrowed von Antropoff 1926 design, without acknowledgement, for his 1949
book, General Chemistry (and subsequently in later editions
of The Chemical Bond).
The periodic table below is scanned in from Pauling's The Nature of The Chemical Bond, 3rd ed., 1960:
Origionally developed in 1933, the colour version of Clark's arrangement was used the the May 1949 edition of Life Magazine, part of a 16 page feature on the atom.
"This is a Left-Step periodic table with a split d-block, that can be rearranged into a cylinder.
Students were expected to keep a copy of the two halves of the table in their note books, for reassembly as required.
It was a clever way of introducing the 32-column form, and the transition from 2D to 3D (that faded into obscurity)":
Two versions of Catalán's Periodic System/Sistema Periodico Ampliado. The first from C.E. Moore 1949, Atomic Energy Levels, National Bureau of Standards, Circular no. 467, Washington DC, vol. 1, table 25 (1949) and the second as referenced here: http://www.miguelcatalan.net/pdfs/bibliografia/biblio09.pdf.
"I feel the footnote along the base of the first table could merit better attention being drawn to it. It says:
This arrangement is by Catalán. The electrons indicated in column two that are connected by braces have approximately the same binding energy. Consequently, for some elements one type of electron is preferred over another in the normal configuration, as for example, Cr, Cb, Pd, La, Ac, Th.
"The connecting braces hone in on the source of much of the controversy concerning notions of an ideal, optimal, better, this or that, or fundamental periodic table.
I can't recall seeing a table with such a feature.
For the second table, turning it on its side (attached) reminds of the ADOMAH [formulation].