pre 1900 formulations
1900 to 1949 formulations
1950 to 1999 formulations
2000 to 2009 formulations
Spiral formulations
3 dimensional formulations
Data mapping periodic tables
Miscellaneous periodic tables
Books and reviews
non-chemistry periodic tables
All periodic tables

 

The INTERNET Database of Periodic Tables

There are hundreds of periodic tables in web space, but there is only one comprehensive database of periodic tables & periodic system formulations. If you know of an interesting periodic table that is missing, please contact the database curator: Dr Mark R Leach.


pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables

Select from here:        Or search:    


The 8 Periodic Tables most recently added to the database:

1919     Snyder's Fundamental Periodic Table of The Elements
1995     Considine's Polar Periodic Table
2023     Bala's Shape of the Periodic Table
1936     Van Wert Periodic table (after Guertler-Leitgebel)
2023     Chemdex: Valence & Oxidation Number Trends
2023     Holistic View of Metals & Nonmetals: Exploded View
2023     Semicircular Hybrid Chart of the Nuclides
2023     Six Stages of The Convergence of The Periodic System


1919

Snyder's Fundamental Periodic Table of The Elements

Snyder MB 1919, The Fundamental Periodic Table of the Chemical Elements, filed in Congressional Library, Washington.

René Vernon writes:

"Notable for:

  • Its attempted integration of the Ln and An into the short form of the periodic table
  • Placement of H over He, Li and F
  • Elements 108 = Pleon; 126 = Akron; 143 = Ultine"

Click to enlarge

Top of Page


1995

Considine's Polar Periodic Table

From: Considine DM (ed.) 1995, Van Nostrand’s Encyclopedia of Science, 8th ed. New York, p. 2376

René Vernon writes:

"A nice design but of quite limited practical utility for quick reference or detailed chemical analysis."

Top of Page


2023

Bala's Shape of the Periodic Table

Gavin J. Bala has produced a nice and detailed look at The Shape of The Periodic Table (.PDF) that reviews the science:

Top of Page


1936

Van Wert Periodic table (after Guertler-Leitgebel)

Van Wert LR, An Introduction to Physical Metallurgy, McGraw-Hill, New York, 1936, pp 17. Van Wert says the periodic table is after "Guertler-Leitgebel", which is presumably Guertler WM & Leitgebel M 1929, Vom Erz zum metallischen Werkstoff: Leitlinien und Rüstzeug der metallurgischen und metallkundlichen Wissensgebiete, Akademische Verlagsgesellschaft, m.b.H., Leipzig

From René Vernon who writes:

In this almost symmetrical presentation, Van Wert divides the periodic table metals into:

Strongly Electropositive:       Groups 1 to 3, Ln
High-melting Heavy Metals:   Transition metals
Low-melting Heavy Metals:    Post-transition metals

If the 15 Rare Earths had been shown as 14, and moved one cell to the left we would have a perfectly symmetrical table.

Elsewhere (p. 38) Van Wert refers to the noble metals as follows:

"With respect to corrosion, the noble metals — gold, the platinum metals, and to a less degree, silver — are in a class by themselves. They are comparatively chemically inert to all common corrodents; only silver is appreciably attacked by sulphur gas."

Van Wert's table also refers to non-metals and to inert gases. On page 7 mention is made of the metalloids:

"There are a few elements, also, that partake of the nature of both metals and nonmetals, under many—indeed, under most—conditions they seem metallic enough, but on occasion their behavior is decidedly nonmetallic. These metalloids, as they are sometimes called, add a further difficulty in the attempt to frame a satisfactory definition of the metallic state."

By 1936, it was known that metalloids had a predominately nonmetallic chemistry (Newth 1894, pp. 7??8; Friend 1914, p. 9). So, on the nonmetal side of house are metalloids; "nonmetals"; and noble gases. Separating out the halogens from the nonmetals yields: metalloids; "nonmetals"; halogens; noble gases.

The net result is four types of metals and four of nonmetals = more symmetry.

Top of Page


2023

Chemdex: Valence & Oxidation Number Trends

From Mark Winter's review paper Chemdex: quantification and distributions of valence numbers, oxidation numbers, coordination numbers, electron numbers, and covalent bond classes for the elements Dalton Trans., 2024,53, 493-511 https://doi.org/10.1039/D3DT03738J.

The images below show the Valence number (VN) and oxidation number (ON) proportions as percentages for the elements; and Periodic tables displaying valence number proportions (%). (There are few data for Pm and no data for Fr and elements beyond Es.)

The position of H and the group numbers are addressed in the paper.


Top of Page


2023

Holistic View of Metals & Nonmetals: Exploded View

From Organising the metals and nonmetals: An update by René Vernon from the chemrxiv preprint server.

Rene writes:

Abstract: This paper updates my 2020 article, Organising the metals and nonmetals in which I advocated for parsing the periodic table into four kinds of metals and four of nonmetals. This framework is retained and updated, and augmented with some additional chemistry-related and philosophical observations.

Top of Page


2023

Semicircular Hybrid Chart of the Nuclides

Nawa Nagayasu has produced a new version of the Segrè Chart of the Nuclides.

Nawa writes:

"The chart has the number of neutrons on the [curved] horizontal axis and the number of protons (atomic number) on the vertical axis. I used the IAEA colour coding [scheme]. JAEA's half-life ranks are indicated by simple numbers, not rounded frames.

"In order to fit the whole chart into a semicircle, the axis representing the number of neutrons was made a spiral-like curve. For clarity, the number of neutrons is shown in the middle of each curve."

Yuri Oganessian has commented:

"Nawa Nagayasu is an original and talented designer. After all, it is not easy to work with 118 elements, but now also with isotopes, of which there are more than 3000. The fan design looks attractive and this is very important. This will make people, especially school age, guess the numbers that are written there. So they will gradually delve into the content of the Table, a truly brilliant creation."

Click image to enlarge

Top of Page


2023

Six Stages of The Convergence of The Periodic System

Bran, A.M., Stadler, P.F., Jost, J. et al. The six stages of the convergence of the periodic system to its final structureCommun Chem 6, 87 (2023). https://doi.org/10.1038/s42004-023-00883-9

Abstract (abridged):

"We show, by analysing the space between 1800 and 2021, that the system has converged towards its current stable structure through six stages, respectively characterised by the finding of elements (1800–1826), the emergence of the core structure of the system (1826–1860), its organic chemistry bias (1860–1900) and its further stabilisation (1900–1948), World War 2 new chemistry (1948–1980) and the system final stabilisation (1980–)."

Periodic tables representative of each period in history. Families of similar elements (sets sharing colour) shown in each table summarise the patterns and do not necessarily imply continuity nor simultaneity of the families throughout the period:

Top of Page


pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables