Home Page
About
Chemogenesis Web Book
Chemical Thesaurus
Tutorials and Drills
Shop
Reviews
Contact
Links
Frequently Asked Questions

pre 1900 formulations
1900 to 1949 formulations
1950 to 1999 formulations
2000 to 2009 formulations
Spiral formulations
3 dimensional formulations
Data mapping periodic tables
Miscellaneous periodic tables
Books and reviews
non-chemistry periodic tables
All periodic tables

The INTERNET Database of Periodic Tables


There are hundreds of periodic tables in web space, but there is only one comprehensive database of periodic tables & periodic system formulations. If you know of an interesting periodic table that is missing, please contact the database curator: Dr Mark R Leach.

pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables

Circular, Spiral and Helical Periodic Table formulations, by date:

1862     Telluric Helix or Screw
1867     Hinrichs’s Spiral Periodic System
1870     Baumhauer's Spiral
1872     Meyer's Spiral System
1881     Spring's Diagram
1887     Flavitzky's Arrangement
1902     Erdmann's Spiral Table
1905     Gooch & Walker Periodic Table
1911     Emerson's Helix
1911     Soddy's Three-Dimensional System
1914     Hackh's Periodic Table
1916     Harkins & Hall's Periodic Table
1919     Hackh's Periodic Spiral
1920     Nodder's Periodic Table
1920     Partington's Periodic Arrangement of the Elements
1920     Schaltenbrand's Helical Periodic Table
1925     Courtines' A Model of the Periodic Table
1926     Monroe & Turner's Spiral
1926     Walter Russell's Periodic Chart of The Elements 2
1928     Janet's Helicoidal Classification
1928     Janet's Lemniscate Formulation
1928     Janet's Three-Dimensional Spiral-Tube System
1930     Janet's Shell Filling Diagram
1933     Clark's Periodic Arrangement of The Elements
1934     Romanoff's System
1937     Pozzi Spiral Periodic Table
1939     Irwin's Periodic Table
1947     Steadman's Design
1947     Stedman's Conic System
1949     Clarke's Periodic Arrangement of The Elements (1949)
1950     Clark's Updated Periodic Table
1950     Scheele's System
1951     Longman's Mural from Festival of Britain
1960     Theodor Benfey's Spiral Periodic Table
1964     Samuel Ruben Periodic Table
1965     Alexander Arrangement of Elements
1965     Giguère's Periodic Table
1967     Mazurs' other 1967 Formulation
1974     Mazurs Version of Janet's "Lemniscate" Formulation
1974     Mazurs' PT Formulation Analysis
1975     Hyde's Periodic Relationships of The Elements
1975     Hyde's Periodic Relationships of The Elements (updated)
1979     Mann's Spiral Periodic Table
1980     Periodic RoundTable
1990     Dufour's Periodic Tree
1990     Monument to the Periodic Table
1990     Pawlowski Circular Periodic Table
1990     Circular Model of the Atom: Opposition in the Elements
1995     Chemical Helix Periodic Table
1995     Melinda Green's Periodic Fractal of The Elements
1998     Wheel of Motion Periodic Table
1999     Moran's Spiral Periodic Table
2001     ElemenTouch Periodic Table
2002     System Québécium Periodic Table
2003     Philip Stewart's Chemical Galaxy II
2003     Bernard's Periodic Table of The Elements in Three Dimensional Form
2003     Bird of Prey Periodic Table
2003     Eight-Group Periodic Table
2004     Rafael Poza Periodic Table
2005     Cyclical Continuum of Elemental Properties
2005     Elements
2005     Pyramid Format Periodic Table
2006     Wikipedia Alternative Periodic Table
2006     Harmonic Circle & Spiral of the Chemical Elements
2007     Wikipedia Circular Periodic Table of The Elements
2007     Gyroscopic Periodic Table
2008     Rafael Poza's Elements and the Magnetosphere
2008     Tomás A. Carroll's Spherical & Russian Doll Formulations
2008     Angular Form of the Periodic Table
2008     Jan Scholten's Periodic table (Spiral Format)
2008     Spiral Periodic Table
2008     Wheel Structure Periodic Table
2008     Teluric Helix from Gutierrez Samanez
2009     Steve Jensen's In-Finite Form
2009     Graphic Representations of the Periodic System
2010     Tai Chi Periodic Table
2010     Fahimi Formulations
2010     Harrison Spiral Periodic Table
2010     Spiral of Atoms and Their Periodic Table
2010     Circular Periodic Table of Elements
2010     Harrington Projection for The 270 AMU Structure
2011     Bayeh's Theoretical Periodic Table of Elements
2011     Bayeh's Theoretical 3D Periodic Tables
2011     Piazzalunga's Circular Periodic Table
2011     Makeyev's Periodic Table
2011     Normal vs Correction Shell "Pi Paradox" for 1-270 AMUs
2012     3D Illustrated Alexander Arrangement of Elements
2012     Vortic Periodic Table in Marquetry
2012     Wheelshaped Table of Elements
2013     3D Left Step Periodic Table
2013     Bernard Periodic Spiral
2013     Muradjan's Mathematical Structure of The Periodic Table
2014     Chandra's Polar Plot Periodic Table
2014     Metallic Character Table
2014     UVS Periodic Tables
2014     Clock Periodic Table
2016     Clock Face Periodic Table
2016     Instructables 3D Periodic Table


1862

Telluric Helix or Screw

The French geologist , Alexandre-Émile Béguyer de Chancourtois was the first person to make use of atomic weights to produce a classification of periodicity. He drew the elements as a continuous spiral around a metal cylinder divided into 16 parts. The atomic weight of oxygen was taken as 16 and was used as the standard against which all the other elements were compared. Tellurium was situated at the centre, prompting vis tellurique, or telluric screw.

Chancourtois' original formulation includes elements in their correct places, selected compounds and some elements in more than one place. The helix was an important advance in that it introduced the concept of periodicity, but it was flawed. The formulation was rediscovered in the 1889 (P. J. Hartog, "A First Foreshadowing of the Periodic Law" Nature 41, 186-8 (1889)), and since then it has appeared most often in a simplified form that emphasizes the virtues and eliminates its flaws. [Thanks to CG for this info.]

Dutch Wikipedia, ScienceWorld & the Science and Society picture library.

Read more in Roy Alexander's All Periodic Tables site.

Top of Page


1867

Hinrichs’s Spiral Periodic System

G.D. Hinrichs’s spiral periodic system of 1867. Programm der Atomechanik oder die Chemie eine Mechanik de Pantome, Augustus Hageboek, Iowa City, IA, 1867.

Top of Page


1870

Baumhauer's Spiral

From Quam & Quam's 1934 review paper.pdf

Top of Page


1872

Meyer's Spiral System

Meyer's Spiral System of 1872 (from van Spronsen):

Top of Page


1881

Spring's Diagram

From Quam & Quam's 1934 review paper.pdf

Top of Page


1887

Flavitzky's Arrangement

From Quam & Quam's 1934 review paper.pdf

Top of Page


1902

Erdmann's Spiral Table

From Quam & Quam's 1934 review paper.pdf

Top of Page


1905

Gooch & Walker Periodic Table

Mazurs' reproduction (p. 82) of a periodic table formulation by Frank Austin Gooch and Claude Frederic Walker, from Outlines of Inorganic Chemistry, Macmillan, London and New York, p. 8/9, 1905 (ref Mazurs p.188):

Thanks to Laurie Palmer for the tip, and to Philip Stewart for the corrections and details.

Top of Page


1911

Emerson's Helix

From Quam & Quam's 1934 review paper.pdf

Top of Page


1911

Soddy's Three-Dimensional System

Soddy's three-dimensional system of 1911 (from van Spronsen):

Top of Page


1914

Hackh's Spiral Periodic Table

Ingo Hackh's spiral periodic table of 1914, from Das Synthetisches System der Atome, Hamburg, Hephaestos.

Philip Stewart says:

"I believe that Hackh's 1914 spiral is of special interest it is the first spiral to take account of Mosley's atomic numbers, and the first to show successively larger pairs of coils. It is also interesting because H stands alone in the centre. I have only seen Mazurs' redrawn (as usual!) version, but Mazurs gives SciAm Supplement 1919 as one reference."

This is the Mazurs version:

Top of Page


1916

Harkins & Hall's Periodic Table

From Quam & Quam's 1934 review paper.pdf

Top of Page


1919

Hackh's Periodic Spiral

From a Scientific American in March 1919, an article by Ingo W. D. Hackh discussing the classification of the elements.

Included is a periodic spiral, developed from Hackh's 1914 version:

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed.

Top of Page


1920

Nodder's Periodic Table

From Quam & Quam's 1934 review paper.pdf

Top of Page


1920

Partington's Periodic Arrangement of the Elements

From Quam & Quam's 1934 review paper.pdf

Top of Page


1920

Schaltenbrand's Helical Periodic Table

From Quam & Quam's 1934 review paper.pdf

Top of Page


1925

Courtines' A Model of the Periodic Table or Periodic Classification

Published in J. Chem. Ed., 2, 2, 107-109 in 1925 by M. Courtines of the Laboratory of Experimental Physics, College of France, Paris.

We do not know the date of the forth image (below), but it looks as if it was prepared a few years later. However, it is a 'top down' view of the 3D formulation.

Courtines 3D PT

Courtines PT

Courtines classification

From Quam & Quam's 1934 review paper.pdf

Courtines classification

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed

Top of Page


1926

Monroe & Turner's Spiral

Monroe and Turner's spiral, in which they correctly place the actinides. Information supplied by Philip Stewart.

Ref. is C J Monroe and W D Turner A new Periodic Table of the Elements, J Chem Ed, 3, 1058-65, 1926

Top of Page


1926

Walter Russell's Periodic Chart of The Elements 2

Walter Russell's Periodic Chart of The Elements 2. View other formulations and an interview here:

Top of Page


1928

Janet's Helicoidal Classification

Janet's Helicoidal Classification, essentially his left-step formulation in its spiral version (ref. Charles Janet, La Classification Hélicoïdale des Éléments Chimiques. Beauvais: Imprimerie Départementale de l'Oise. 1928). Information supplied by Philip Stewart:

From Quam & Quam's 1934 review paper.pdf

Top of Page


1928

Janet's "Lemniscate" Formulation

From in The Helicoidal Classification of the Elements, Chemical News vol. 138, 21 June 1929, Fig. XI, p. 392:

Philip Stewart points out that this formulation is an 'end on' view of the Janet Cylinder or Three-Dimensional Spiral-Tube System formulation, and the term "lemniscate" comes from Mazurs.

Top of Page


1928

Janet's Three-Dimensional Spiral-Tube System

Janet's Three-Dimensional Spiral-Tube System of 1928 (from van Spronsen):

Click here for large diagram.

Top of Page


1930

Janet's Shell Filling Diagram

Janet produced six papers, in French, which are almost unobtainable as he had them privately printed and didn't distribute them properly. The shell-filling diagram dated from November 1930, six years before Madelung. Note that Janet uses Bohr's radial quantum number, k, which is l+1. In the text he formulates the n+k-1 rule. Information supplied by Philip Stewart.

Top of Page


1933

Clark's Periodic Arrangement of The Elements

Origionally developed in 1933:

Top of Page


1934

Romanoff's System

Romanoff's System of 1934 (from van Spronsen):

Top of Page


1937

Pozzi Spiral Periodic Table

A spiral periodic table formulation constructed by E.C. Pozzi in 1937, from here.

Note the "Strong Positive, Strong Negative, Weak Positive and Weak Negative" corners:

Top of Page


1939

Irwin's Periodic Table

From his paper, Periodicity Patterns of The Elements in J. Chem. Educ., 1939, 16 (7), p 335, K. Gordon Irwin presents a Periodic Chart of the Elements in Spiral Form. The paper is used to justify this formulation in terms of periodicity:

Kabbalistic

Top of Page


1947

Steadman's Design

Top of Page


1947

Stedman's Conic System

Stedman's conic system of 1947 (from van Spronsen):

Top of Page


1949

Clark's Periodic Arrangement of The Elements

Origionally developed in 1933, the colour version of Clark's arrangement is from Life Magazine, May 1949. This was the model for Longman's 1951 mural. Information supplied by Philip Stewart.

Top of Page


1950

Clark's Updated Periodic Table

John D Clark's 1950 chart. It looks as though the experience of producing the 1949 version for Life Magazine caused him to have a radical rethink. John D. Clark, A modern periodic chart of chemical elements. Science,111, 661-663 (1950). Information supplied by Philip Stewart.

Top of Page


1950

Scheele's System

Scheele's system of 1950 (from van Spronsen):

Top of Page


1951

Longman's Mural from Festival of Britain

Edgar Longman's mural from the 1951 Festival of Britain Science Exhibition, restored by Philip Stewart:

Top of Page


1960

Spiral Periodic Table by Theodor Benfey

Spiral Periodic Table by Theodor Benfey, click here for a live web version.

Top of Page


1964

Samuel Ruben Periodic Table

An interesting periodic table from 1964, found at an estate sale. The text says that the elements are: "arranged according to the atomic number Z and column relation to the rare gases", and is by Samuel Ruben (wikipedia).

Click here to see the full size version.

Samuel Ruben Periodic Table

Samuel Ruben Spiral

Thanks to Rachel Helling for the tip!

Top of Page


1965

Alexander Arrangement of Elements

The Alexander Arrangement of Elements is a 3D periodic table concept based on strict adherence to the Periodic Law, and, like the first representation of elements in periods by de Chancourtois, connects every element data box in unbroken order.

Roy Alexander, a Brooklyn born science museum exhibit and teaching aid designer, has told me in a personal communication: "I came up with the idea (being ignorant of anything but the flat Sargent Welch charts) in 1965. I wasn't able to patent [the downslant in the p-block] until 1971." (U.S.Patent #3,581,409)

At the time Roy had no idea that others had employed a similar technique to build a 3D table – including the very first periodic table developer, de Chancourtois, who is often credited with being the original discoverer of the periodicity of elements and the originator of the three-dimensional method of element arrangement and representation.

These 3D forms attempt to return the Seaborg separated f–block to its proper position in the table rather than remaining exiled. This, and contemporary attitudes about Hydrogen as being in more families than one – is uniquely addressed in Roy's 3D models.

Subsequent study of the Periodic Law and the periodic table's value in education convinced Roy that the basic rationale for developing the Alexander Arrangement of Elements was only one of the many good reasons for producing it for the public to share, so he sought and was granted a U.S. patent on the p-block downslant in order to manufacture and market the AAEs as teaching/learning aids.

Roy Alexander's goal of introducing the AAE into classrooms, laboratories, chemistry textbooks, and reference material remains the same today, but rather than replacing the conventional charts, its niche in education is at the very point that a lesson on arrangement of atoms into a chart begins. Element sequencing (vs. 24 breaks/gaps) credits the chart as well as the Periodic Law, which establishes subsequent confidence in the common flat charts, much as the world globe establishes the reality, and flat printed projections - maps - are vital (and relished) for convenience.

The first commercial production of Alexander Arrangements was in 1995, when Roy pioneered by constructing a website - periodictable.com - for marketing. Three versions were printed: two versions for student entry of element symbols, the larger die-cut for easier assembly.

An even larger model was produced with basic element data printed in the boxes, also die cut. These were printed on white card stock, with black ink.

Another version (below) was produced in conjunction with ATMI's annual report in 2000. This was added to Roy's product offerings, called the DeskTopper, and is still available. They are die cut to form a 7.25" high model with the f-block position attached after La, but can be altered to put La on the f-block. (See AAE Features at the top of this page.)

Besides the hands-on educational application, the DeskTopper can be used as a pen & pencil caddy, and flattened without losing the continuity of the element data. This flattened form has suggested design of a Braille periodic table of the same format, and this is also being pursued.

Marketing the Alexander Arrangements was moved to AllPeriodicTables.com in cooperation with Theodore Gray in 2006, who purchased the PeriodicTable.com domain name and funded the production of Roy's newest model, illustrated with Theo's amazing element photos.

For the first time, the elements beyond those naturally occurring have been omitted from a modern periodic table, simplifying initiation to chemistry. This factor denies the concept of obsolescence, and this version has been called the Forever Periodic Table. Details of this new 3D periodic table model kit have been placed at 3DPeriodicTable.com.

Further AAE information and images may be found at the Alexander Arrangement website.

Top of Page


1965

Giguère's Periodic Table

Paul Giguère's Periodic Table formulation, from here:

Top of Page


1967

Mazurs' other 1967 Formulation

From Edward G. Mazurs' 1974 (2nd edition) Graphic Representations of the Periodic System During One Hundred Years, University of Alabama Press:

Mazurs 1967

Thanks to Philip Stewart for the tip!

Top of Page


1974

Mazurs Version of Janet's "Lemniscate" Formulation

Janet’s lemniscate formulation periodic table as modified by E.G. Mazur in his Graphic Representations of the Periodic System during One Hundred Years (1974), cited in Punyashloke Mishra’s The Role of Abstraction in Scientific Illustration: Implications for Pedagogy (1999) republished in Carolyn Handa’s Visual Rhetoric in a Digital World: A Critical Sourcebook", from the Island94 blog, here:

Top of Page


1974

Mazurs' PT Formulation Analysis

In his 1974 book Edward G. Mazurs (2nd edition) Graphic Representations of the Periodic System During One Hundred Years, University of Alabama Press gives a comprehensive analysis of periodic table formulations.

Mazurs identifies most PT formulations as being:

  • Spiral
  • Plane lemniscate
  • Concentric circles
  • Helix on a cylinder
  • Helix on a cone
  • Space lemniscate
  • Space concentric circles

Top of Page


1975

Hyde's Periodic Relationships of The Elements

J. Franklin Hyde was an industrual chemist. His PT formulation is available from the Gelest website:

Top of Page


1975

Hyde's Periodic Relationships of The Elements (updated)

I received an email from Jeremy Sachs saying:

"Gelest don't seem to offer [this periodic table formulation] anymore, and because their version heavily modifies Hyde's original table, I've reproduced the 1975 version of his table with the permission of his surviving relatives."

Click here to see the full size version.

Hyde's Periodic Relationships of The Elements (updated)

Top of Page


1979

Mann's Spiral Periodic Table

From AT Mann:

"I designed a spiral periodic table which was published first in my book The Divine Plot: Astrology, Reincarnation, Cosmology and History (George Allen & Unwin, London, 1986) which attempts to correlate the PT with astrological understanding of the inherent properties of the signs and planets":

Top of Page


1980

Periodic RoundTable

Gary Katz says: "The Periodic RoundTable is a unique three-dimensional model of the Periodic Table, an elegant spatial arrangement of the chemical elements that is both symmetrical and mathematical. It is the ultimate refinement of Mendeleev's scheme, one that will take us into the twenty-first century and beyond. The Periodic RoundTable possesses such a high degree of order because it is based exclusively on the system of ideal electronic configuration, which in turn is the basis of periodicity among the elements. In the Periodic RoundTable the electron shells are filled in the same order as the elements themselves appear, demonstrating a holistic relationship between the chemistry of the elements and the orbital descriptions of their electrons."

Top of Page


1990

Dufour's Periodic Tree

The Dufour Periodictree periodic table formulation, from here:

 

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed.

Top of Page


1990

Monument to the Periodic Table

Monument to the periodic table, in front of the Faculty of Chemical and Food Technology of the Slovak University of Technology in Bratislava, Slovakia. The monument honors Dmitri Mendeleev.

Top of Page


1990

Pawlowski Circular Periodic Table

On John Pratt's website there is an article that is both an introduction to Helen Pawlowski's model of the atom and to her Circular Periodic Table, as well as a book review of her book The Visualization of the Atom (Riverton, UT: Pawlowski Family Trust, 1990). First Helen and her work are introduced, then the model's strengths and weaknesses are summarized:

Top of Page


1990

Circular Model of the Atom: Opposition in the Elements

The Circular Model of the Atom is a circular periodic table that shows atomic structure in addition to periodicity. Unlike any other periodic table or model, it demonstrates that the atomic structure has an inherent dipole magnet that create positve and negative fields and elemental qualities at the atomic level.

The Circular Model of the Atom was created by Helen A. Pawlowski in the 1980s, and published in her work, Visualization of the Atom.

Her brother, Paul A. Williams extended many of Helen's ideas with his examination of the standard model using Helen's Circular Atom Model. This website contains some of Helen's ideas and Paul's writings.

Circular Model of the Atom: Opposition in the Elements

Top of Page


1995

Helical Periodic Table

Tarquin Publications sell a make-your-own three dimensional, helical periodic table.

Top of Page


1995

Melinda Green's Periodic Fractal of The Elements

Melinda Green writes: "This is an alternative version of the standard chemistry Periodic Table of the Elements that I developed. In high school I learned the basic concept of element families and how they were arranged into columns to show the periodicity in their electrical properties. I was fascinated with the idea, but immediately wondered whether there might be better ways of graphically showing those relationships." read lots more here

Top of Page


1998

Wheel of Motion Periodic Table

The Wheel of Motion (WoM) representation of the periodic table of elements shows the periodic nature of the elements, as developed in the Reciprocal System of Physical Theory (RST).

It was originally developed by Douglas Bundy in 1998, a member of the International Society of Unified Science (ISUS). 

Top of Page


1999

Moran's Spiral Periodic Table

Jeoff Moran's spiral periodic table can be found at periodicspiral.com.

See an article in the New York Times:

Top of Page


2001

ElemenTouch Periodic Table

Yoshiteru MAENO writes:

"I am a Physics Prof. at Kyoto University, Japan. My field of study is experimental superconductivity. I recently found the work by Schaltenbrand in 1920 on your website. One might say that Elementouch is a re-invention of Schaltenbrand's, but by arranging the element names helically on three cylinders, its usefulness has been improved":

Top of Page


2002

System Québécium Periodic Table

Using Google Translate of this page:

"To establish a new classification system components, Pierre Demers was assumed that the electronic structure of the atom contains one of my all others according to the equation Z = 117 to Z = 1. It is taking my electrons and removing them from my material that can reproduce all the elements and thus repeat the structure of your table. That is why this new organization is called the System Québécium":

Top of Page


2003

Philip Stewart's Chemical Galaxy II

Philip Stewart's Chemical Galaxy II periodic table formulation, from here:

Click here for a larger version.


A simplified 'chemical galaxy':

Top of Page


2003

Bernard's Periodic Table of The Elements in Three Dimensional Form

Hinsdale Bernard's Periodic Table of The Elements in Three Dimensional Form, US Patent 7,297,000:

Roy Alexender, of the Desk Topper arrangement, has photoshopped a blurry photograph sent by Bernard along with a product mockup:

Top of Page


2003

Bird of Prey Periodic Table

From Edmond (Ned) Maurice Peyroux:

"I am a self-taught, underground cartoonist - around the end of 2005 I began studying ether physics, & mid 2006 orgone biophysics. End of 2008 I was going through old note & sketch books while compiling pieces for a poetry book, & came across a sketch I did in 2003 of the first 20 elements of the periodic table in a spiral. I had just begun studying the ether vortex model of the atom & thought a vortex model of the periodicity might be a fun experiment so I played with it more. I didn't remember what inspired the original concept sketch 5 years later, but my guess was I had stayed up too late watching public television again. It probably had to do with some 4-Dimension ring concepts I was playing with, but by 2008 I was thoroughly involved in 3-D biophysics & wasn't thinking back to earlier thought experiments I had done."

"The compositions are largely artistic, naturalistic, & most are like steps on a story board, showing transformation of the table, distorting from from rectangular to spiral, then splitting between metals & noble gases like the wings of a bird, flapping, then joining again to make the spiral (then the spiral inflates to make a flower, wilts into a spider's web) - there are many transitions I have in mind, but I my work is not limited to the periodic table.":

Top of Page


2003

Eight-Group Periodic Table

From Number Patterns in Nature by Jan C.A. Boeyens, Crystal Engineering 6 (2003) 167–185.

The Eight-Group Periodic Table of the 81 stable elements, in spiral form. Available sites on the prime-number cross, starting from zero, number 102.,

<Eight-Group Periodic Table>

Top of Page


2004

Rafael Poza Periodic Table (Click to Enlarge)

Top of Page


2005

Cyclical Continuum of Elemental Properties by Robert R. Northup

The Cyclical Continuum of Elemental Properties Periodic Table by Robert R. Northup

"The Cyclical Continuum of Elemental Properties is a user-friendly teaching tool that is intended to accompany the Periodic Table of Elements. Hydrogen is shown at the center, atomic numbers and symbols form an unbroken spiral, and element groups 1 through 18 (noble gases, alkali metals, halogens, etc.) are displayed by colored arcs. Beginning chemistry students can visually see the continuity of atomic numbers in the Cyclical Continuum as a way to introduce and orient them to the Periodic Table. Advanced chemistry students can test their understanding of the Periodic Table's organization by applying that knowledge to interpretation of the Cyclical Continuum."

Read more and buy the poster at the Cyclical Continuum web site.

Top of Page


2005

Painting of The Elements

From Gabrielle David's website, here, a painting called Elements, inspired by Melinda Green's Periodic Fractal formulation of 1995:

  • The tiniest ball in the center is hydrogen, the next helium, lithium, etc.
  • Colors indicate the chemical group.

Top of Page


2005

Pyramid Format Periodic Table

From Wikipedia, this Pyramid Format Periodic Table is Based on a graphic from Scholten J."Secret Lanthanides", 2005, ISBN 90-74817-16-5;

Top of Page


2006

The Wikipedia Alternative Periodic Table

On the Wikipedia there is another circular form of periodic table:

Top of Page


2006

Harmonic Circle & Spiral of the Chemical Elements

Brian David Andersen of Tri-Vortex Technology (Researcher/Inventor/Scientist), Subtle Energy Products trivortex.com:

Top of Page


2007

Wikipedia Circular Periodic Table of The Elements

Wikipedia circular periodic table of the elements here:

Top of Page


2007

Gyroscopic Periodic Table

From the Garuda Biodynamics web site: "The Gyroscopic Periodic Table has been a natural progression developed from a study of Soil Science, Dr Steiner's Agriculture and Medical Courses, Astronomy and Astrology."


Top of Page


2008

Rafael Poza's Elements and the Magnetosphere

Top of Page


2008

Tomás A. Carroll's Spherical & Russian Doll Formulations

Tomás A. Carroll has devised a spherical formulation of the Periodic Table, and from this a nested Russian Doll formulation.

Tomás writes: "I accept your veiled challenge that it is not possible to formulate a spherical periodic table and propose two solutions for your consideration. The EXCEL spreadsheet shows exactly how I transformed the quantum numbers from the standard 4D Cartesian coordinates to spherical coordinates in 3D, using two different centers. I included cylindrical coordinates too, just for fun."

Top of Page


2008

Angular Form of the Periodic Table by Kamal Akhtar

"The complete periodic table is consists of two circles, principal circle and auxiliary circle. The principal circle is consist of seven tracks (periods) and eighteen sectors (groups). The auxiliary circle is consist of only two tracks, inner track and outer track. There is no division of sectors in auxiliary circle." Read more in a word.doc. View the full size PT.

KAMAL AKHTAR
INSTITUTE OF NICE TEACHING EDUCATION AND LEARNING
1, RAJ COLONY, BEHIND J.V. JAIN INTER COLLEGE
OLD KALSIA ROAD, SAHARANPUR-247001 (U.P.), INDIA

Top of Page


2008

Jan Scholten's Periodic table (Spiral Format)

A spiral format periodic table by Jan Scholten:

Top of Page


2008

Spiral Periodic Table

A spiral periodic table available as a poster, binder, cup, T-shirt, etc. by Vectoria:

Top of Page


2008

Wheel Structure Periodic Table

From the Science Photo Library, a computer illustration representing the periodic table of the elements as a wheel structure.

  • The radiating spokes are the groups and are colour coded.
  • The heights of the columns represent the elements' atomic numbers, being the numbers of protons in their nuclei. The elements in any one group share many chemical and physical properties.
  • At the wheel's centre is the first element, hydrogen, (H, white).
  • At the end of each spoke, the elements are unnamed, and only their atomic numbers are shown, from 110-120.
  • The transition elements (upper left, orange) and the Lanthanides and Actinides (upper right) are blocks of elements with predictably varying properties.

Top of Page


2008

Teluric Helix from Gutierrez Samanez

The Teluric Helix from Gutierrez Samanez is inspired by the telluric helix Chancortois (1864) with the difference that the sequence of the elements are rolled into a cone shape rather than a cylinder:

Top of Page


2009

Steve Jensen's "In-Finite Form"

"I'm a figurative sculptor, living in Minneapolis MN. A few years ago, while looking at a two dimensional version of the periodic table, I too wondered if it would be possible to create a Periodic Table without any visual breaks in its numerical sequence. Although I had never seen anything other than the rectangular flat table, I thought I might be able to solve this spatial continuity problem three dimensionally. I also wanted to limit myself to using a 3-D "line" that had no sudden changes in direction. After coming up with what I thought was a new and unique sculptural resolution, I put the project aside. Only recently (after re-building my paper model out of a translucent material) did I do some research on the web, and immediately recognized the strong likeness between my version and the Alexander Arrangement. Even more surprising was my models' visual similarity to Crookes' figure eight design from some 111 years ago.

"Although there are obviously many inventive and well thought out responses to this design challenge, I believe that my solution is a unique one, and an improvement over some of the previous three dimensional forms. The "line" of my model allows for contiguous numerical placement of all the symbols (while maintaining group continuity along its vertical axis), even as the shape of its plan view makes visual reference to the well-known symbol for infinity. What's more, in my version, the Lanthanide & Actinide series do not occupy a separate field but are fully integrated into the continuous linear flow. This piece, which I've entitled "In-Finite Form" speaks to the mystery of the endless flow of space, even as it folds back onto itself within the confines of a finite system."

Steve Jensen ©September 2009

Top of Page


2009

Graphic Representations of the Periodic System

Mary E. Saecker writes an article in Chemical Education Digital Library, Periodic Table Presentations and Inspirations: Graphic Representations of the Periodic System, that reviews some periodic table formunations.

The paper contains a link to this pdf file which gives templates and instructions for several print, cut-out & build periodic table formulations:

Supplement to: Periodic Table Presentations and Inspirations by Mary E. Saecker, J. Chem. Educ., 2009, 86, 1151.

Construction Directions A Cut-Out Chart of the Periodic System (Periodic Table Cylinder)

Top of Page


2010

Tai Chi Periodic Table

Joyous Wong, , a student at the Hebei Normal University, China presents a periodic table based on the Chinese cultural background of Tai Chi:

Top of Page


2010

Fahimi Formulations

Peyman Fahimi has posted some periodic table formulations to www.img98.com, these can be found here, here, here, here & here:

The two most interesting are are shown below:

Top of Page


2010

Harrison Spiral Periodic Table

This spiral, inspired by Stewart's Chemical Galaxy, is based on the modern periodic table with the elements strictly arranged in the increasing order of their atomic number and in accordance with their electron configurations.

The spiral separates the elements into the eight dominant 'A' groups of normal elements, and the eight corresponding 'B' subgroups of transitional and inner transitional elements, which have been incorporated as the inner spiral. The organisation of the elements closely follows H.G. Deming's 1923 Periodic Table where A B numeration was first utilized to correspond the characteristic oxides of the 'B' groups to those of the 'A' groups. The result of this design places Group VIII, the triads Fe, Co, Ni, etc. as a subgroup of Group 0 (or 18 Helium Group) which conflicts with some modern periodic tables, though broadly agrees with Deming's original proposal (VIIIA and VIIIB).

Hydrogen, which generally cannot be considered as part of any group, has been placed with the Fluorine group VII which appears its natural place in the spiral. Common names have been used where practicable to make the table more educational and reader-friendly. Element symbols have been included in the expanded poster of this table.

Look at a larger PDF.

Top of Page


2010

Spiral of Atoms and Their Periodic Table

Page 8 of my website (in Russian) shows The Spiral of Atoms and Their Periodic Table, which depicts a spiral disk of atoms with a periodic table of their relative masses.

This information clarifies the options published in the editions of my book The Axiomatics of Nature (2007-2009). Mark Adelman Samuilovich (Mark S. Eidelman)

Top of Page


2010

Circular Periodic Table of Elements

Michael Paukner's circular periodic table is one alternative to the standard periodic table of the elements:

Top of Page


2010

Harrington Projection for The 270 AMU Structure

From Bill Harrington, Founder/CTO of Rainforest Reactor Research and Temporal Dynamics Laboratory, comes a Harrington Projection for The 270 AMU Structure :

Top of Page


2011

Bayeh's Theoretical Periodic Table of Elements

"The modern periodic table is based on quantum numbers and blocks, many problems faced the scientists and researchers when arranging the elements in the traditional and modern periodic tables as placing some elements in the incorrect place as (He) Helium, (La) Lanthanide and many others elements..." read the full pdf article here:

Top of Page


2011

Bayeh's Theoretical 3D Periodic Tables

From Bayeh Claude: "I have designed these periodic tables as developments of Bayeh's Theoretical Periodic Table, but I have introduced new shapes and 3D versions":

  • Crocodile Periodic Table
  • Ship Periodic Table
  • Snake Periodic Table
  • Spiral Periodic Table
  • Spiral rectangular Periodic Table
  • Spiral triangular Periodic Table

Top of Page


2011

Piazzalunga's Circular Periodic Table

"My name is Marco Piazzalunga, I'm from Bergamo, Italy and i'm 12 years old. I am very interested about chemistry and about your website dedicated to the periodic tables of elements. I've made one graphic version of the periodic table based on a "round" model and i would like to know your opinion about it. I'm sending you the file attached. I hope you enjoy it":

Top of Page


2011

Makeyev's Periodic Table

By Alexander Makeyev – integrated interdisciplinary researcher, inventor, poet – a long pdf document (1093 pages in Russian, here) that contains a new formulation:

Top of Page


2011

Normal vs Correction Shell "Pi Paradox" for 1-270 AMUs

From Bill Harrington, Founder/CTO of Rainforest Reactor Research and Temporal Dynamics Laboratory, comes a Normal vs Correction Shell "Pi Paradox" for 1-270 AMUs:

Top of Page


2012

3D Illustrated Alexander Arrangement of Elements

The design of the 2012 Alexander Arrangement of Elements (AAE) follows the principles of a three-dimensional model developed by Roy Alexander in 1965: a printed representation of element information based on strict adherence to the Periodic Law, with every element data box physically and visually contiguous and continuous within the sequence of atomic numbers in generally accepted element property related columns - "...the periodic table the way it's supposed to be".

This is made possible by wrapping, folding, and joining the printed material and employing the patented p-block downslant of the element data boxes to allow the end element of a period to be adjacent to the first element of the next period.

Several unique features separate it from the previous four versions of the AAE

  • The visual effect mirrors the look of Theodore Gray's series of posters, books, element cards and periodictable.com website and apps for the Apple iPod and iPad.
  • Each element box is dominated by a Theodore Gray element photograph, with the element name, letter symbol, and atomic number relatively large, often overlapping the photo.
  • The period numbers (below, right) are printed at the interface of the end/beginning of the periods, folded 90 degrees on the model, and the blocks and columns (old & new numbers), are identified below the data boxes - and in the case of the Actinoids, above.

  • The element blocks connect at a central nexus (below, center), with the d- and f-blocks leaving, looping, and returning there, thus allowing the shorter period gaps above to be closed. For best visibility of the element data, these loops pinch together near the intersection. The p-block bends in a half-circle to join the s-block at the corner described above, with a patented 'downslant' where the element boxes gracefully sweep down a full box height (above) within this block to allow elimination of the "carriage return" effect: each period ending on the row above the next.

  • The extended Hydrogen data box, a characteristic of all Alexander Arrangements, is more extended in this model, reaching for the multiple positions of the H box that are still under discussion among experts. The extra-extended Hydrogen box, illustrated by a composite image of a hydrogen cloud in space, (above, right) loops over the s- and p-blocks. Starting up from behind the corner of Helium & Lithium, inside the half-helical tube to loop over Helium, attach above Lithium, Beryllium and then Carbon as the loop descends (joining the ascending portion) over the data boxes of the s- & p-blocks, terminating in contact with Fluorine, Neon, and corner-on to Neon.
  • The model size is the same as the previous Display Version of the AAE, but has fewer element data boxes, due to there being no photos of the lab created elements and for simplification of the educational application - introduction to property periodicity and organization of element data - the elements with atomic numbers over 94 are not included (see addendum).
  • Where the f-block begins and ends, between Barium and Lutetium, the f-block is held perpendicular to the only flat segment of the element display by a pair of triangular braces, which also create the flat area, aligning the s-block with the 'pinch' of the d-block. This is particularly apparent from the bottom, when the model is supported from above. (see below)

Designed by Roy Alexander, a science museum exhibit and teaching aid designer, the Adobe Illustrator art for the model was started by Ann Grafelman, and continued by Roy from mid 2011 through November of 2012.

Photos were provided by Theodore Gray, and Element Collection funded the printing and die cutting performed by Strine Printing in York, Pennsylvania. The model kit was first offered at Theo's PeriodicTable.com, then at Roy's AllPeriodicTables.com and the new 3dPeriodicTable.com, which site is dedicated to the 3D Forever Periodic Table only, with add-ons, application suggestions, and descriptions and commentary of all sorts.

Assembly instructions and step photos, as well as a number or completed model color photographs are included with the kit. These were developed with prototype models, and while functional, have been upgraded and accompanied by an assembly video at AlexanderArrangementOfElements.com/3D

Addendum:

Text relating to the abbreviation of the ever increasing number of elements is explained at two places on the 3D AAE illustrated periodic table model kit. One will remain with the model and one is removed at the time of assembly.

That which remains runs under the Actinoids and the d-block elements, where the lab created elements might ordinarily be expected to be found, says:

The lab created elements ordinarily found in this part of a periodic table are not to be found in nature, there can be no photographs of them, so nothing needs to be added to this element photo periodic table - ever - so it will never be obsolete, a Forever Periodic Table.

That which is removed says:

Naturally-occurring elements have been numbered variously, generally between 80 and 96, all for cogent scientific reasons.

For easier teaching and learning, we have included on this periodic table only the 92 elements actually currently existing on Earth and in the remainder of the Universe, and adding Technetium and Promethium, which, although they may have no stable forms, serve to fill what would otherwise be gaps in the sequence.

Not added for practical and educational reasons are 'elements' consisting only of pages and pages of computer data from smashing atoms in particle accelerators. Another reason is that there can be no photographs of them to show, and as a result, your arrangement is complete and never be obsolete - your Forever Periodic Table.

Included with the art of the periodic table on the die cut substrate that makes up the model is some background information about the the history of three dimensional periodic tables.

The first of these is about the discoverer of the concept of arranging the elements in periods suggested by the properties of the elements, de Chancourtois.

The second 3D periodic table information piece (on the rear of the de Chancourtois removable card) are sketches of a number of the 3D periodic tables found on the Chemogenesis website.

Top of Page


2012

Vortic Periodic Table in Marquetry

From Dr David Robson:

"My vortic periodic table created in marquetry may be of interest. I have always thought of vortic energies and with retirement time, I used my Marquetry Hobby to so create. Despite the inevitable Black Hole centre I have included the Higgs Boson there as a tribute to its discovery and potential as a window to elsewhere."

Top of Page


2012

Wheelshaped Table of Elements

From Facebook, a Wheelshaped table of elements.

Please note the symmetry of this representation.

As a result, it is possible that element 118 is the very last one in the periodic table. We have the sequence:

2 x 14 (blue)
4 x 10 (brown)
6 x 6 (violet)
8 x 2 (green)

and, logically, neither first nor last factor can be 0 or -2 (they differ in two columns above respectively by 2 and 4). On the other hand, the coherence of the structure requires the existence of two additional elements at the beginning!

Top of Page


2013

3D Left Step Periodic Table

By Masahiko Suenaga, Kyushu University, Japan a 3D Left Step Periodic Table.

"Inspired by the work of Dr. Tsimmerman and Dr. Samanez, I have created a new 3D Left Step Periodic Table, which resembles to Mt. Fuji, recently registered as a World Heritage site. For more information, please visit my website":

Top of Page


2013

Bernard Periodic Spiral

The Bernard Periodic Spiral of the Elements (BPSE), depicts a novel rendition of the Periodic Table that replaces the flat rectangular format with a continuous unidirectional spiral that maintains all the properties of Group and Period formation.

Comparisons may be made with similar models spanning the last three decades of the 20th century (Alexander, 1971; Mazurs, 1974; & Kaufman, 1999).

In the chart form, this new rendition is referred to as the Elliptical Periodic Chart of the Elements. In the three-dimensional form, the model resembles a Christmas tree in shape with the 7 Periods represented as circular platforms situated at various levels with the elements placed appropriately at the outer edges of each of these platforms as a Period builds up. The elements may be represented as spherical objects or flat discs with radii proportionate to atomic radii (or reasonable approximations). Color schemes accentuate the four different Blocks of elements: the s-Block (green), the p-Block (blue, with the exception that the last Group is red signifying the end of a Period), d-Block (orange), and the f-Block (yellow). The grey section, called the Group-Period Interchange, is where the end of a particular Period connects to the beginning of the next Period, and, at the same time, transitions from Group 18 to Group 1.

Watch the video here:

<Bernard Periodic Spiral>

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed.

Top of Page


2013

Muradjan's Mathematical Structure of The Periodic Table

From the website periodictablemathstructure:

Abstract:

The Periodic Table with a new double numerical structure, presented here is attempt to find table form which will in some new way represent the periodicity and symmetry of the Elements, with the Periodic System as base. Also this tetrahedral laminar table structure maybe will became a base for developing a new shell structure of atomic nucleus. This new rearrangement of the chemical element is based on mathematical formula which result is simple, length of the periods:

Math Periodic Table

Top of Page


2014

Chandra's Polar Plot Periodic Table

MONOGRAPH ON ATOMS, BY Dr. N. Naveen Chandra, 543 Bellamy Road North Scarborough, On, M1H1G5, 416 439 6630, chandraalex@hotmail.com © N.Naveen Chandra, 2014.

Abstract

A new way of graphical representation of atoms is developed and presented here. Atoms are recognized as functions of two variables A(r,Θ), where r =2,10,18,36,54,86,118 (given arbitrarily r=1,2,3,4,5,6,7) represents period and Θ representing group, is actually the angle between the groups. A mathematical solution is obtained for Θ having three distinct values of (π /9) radians, (π/18) radians and (π/27) radians which define three super groups satisfying the equation 15(π/27) +10(π/18) +8 (π /9) =2π. 15 groups of two Atoms with a transition zone of (π/27) radians is nominally called Grey Super Group (GSG). 10 groups of which 9 have four Atoms and 1 has two Atoms, also including a transition zone of (π/18) radians, is nominally called Blue Super Group (BSG). 8 groups of which 7 have 6 Atoms and one has 7 Atoms, including a transition zone of (π/9) radians is called Yellow Super Group (YSG). The group with 7 atoms is the so called reference group of Atoms 2, 10, 18,36,54,86 and 118. The GSG has 30 Atoms, the BSG has 38 Atoms and the YSG has 49 Atoms. The Atom 1 is at the centre of the Hub and does not belong to any group or period and has coordinates of (0, 0). Atom 1 having no neutrons is unique.

Top of Page


2014

Metallic Character Table

"I would like to submit you an hexagonal periodic table. It's structured in different rings. The elements are ordered on their metallic characters so in the inner rings there are noble gases and nonmetals while in the outer rings there are alkali and alkaline earth metals. I based the order on the typical metallic characteristics: low ionization energy, electron affinity, etc... "

Marco Piazzalunga <marco.piazzalunga@live.com>

Metallic Characters

Top of Page


2014

UVS Periodic Tables

From the Universal Vortical Singularity (UVS) website, two related formunations from the nucleosynthesis in the universe section, one showing a "manifold dual-core 3-sphere hypersphere topology", and the other showing a "dual-core Möbius strip topology":

UVS manifold dual-core 3-sphere hypersphere topology

UVS dual-core Möbius strip topology

Top of Page


2014

Clock Periodic Table

Prof. Martyn Poliakoff of the University of Notting, and star of the Periodic Videos YouTube Channel, explains how he was given a periodic table clock by a Japanese School teacher... which he likes very much:

Clock PT

 

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed

Top of Page


2016

Clock Face Periodic Table

In 2014 Prof. Martyn Poliakoff – of YouTube fame – showed us a working Periodic Table clock, here.

The designer of the clock, Nagayasu (a Japannese school teacher), has now provided a fuller periodic table based on the same design:

clock

Top of Page


2016

Instructables 3D Periodic Table

From Makendo on the Instructables website:

The first periodic table was developed in 1862 by a French geologist called Alexandre-Émile Béguyer de Chancourtois. He plotted the elements on a cylinder with a circumference of 16 units, and noted the resulting helix placed elements with similar properties in line with each other. But his idea - which he called the "Telluric Spiral" (see here), because the element tellurium was near the middle - never caught on, perhaps because it was published in a geology journal unread by chemists, and because de Chancourtois failed to include the diagram and described the helix as a square circle triangle.

Mendeleev got all the glory, and it is his 1869 version (dramatically updated, but still recognizable) that nearly everyone uses today.

This instructable [project] documents my efforts to reimagine a 3D periodic table of the elements, using modern making methods. It's based on the structure of a chiral nanotube, and is made from a 3D printed lattice, laser cut acrylic, a lazy susan bearing, 118 sample vials and a cylindrical lamp.

Top of Page


 

 

pre 1900 formulations 1900 to 1949 formulations 1950 to 1999 formulations 2000 to 2009 formulations Spiral formulations 3 dimensional formulations
Data mapping periodic tables Miscellaneous periodic tables Books and reviews non-chemistry periodic tables All periodic tables

 

 


Periodic Table, What is it showing?
Binary Compounds

© Mark R. Leach 1999-


Queries, Suggestions, Bugs, Errors, Typos...

If you have any:

Queries
Comments
Suggestions or periodic table representations not shown on this page
Suggestions for links
Bug, typo or grammatical error reports about this page,

please contact Mark R. Leach, the author, using mrl@meta-synthesis.com

This free, open access web book is an ongoing project and your input is appreciated.

Online Marketing
OnToplist is optimized by SEO
Add blog to our blog directory.

counter started in 2011