previous home next

The INTERNET Database of Periodic Tables

There are thousands of periodic tables in web space, but this is the only comprehensive database of periodic tables & periodic system formulations. If you know of an interesting periodic table that is missing, please contact the database curator: Mark R. Leach Ph.D.

Use the drop menus below to search & select from the more than 1100 Period Tables in the database:

Text search:       


Periodic Table formulations from the year 1930:

1930   Janet's Shell Filling Diagram
1930   Nekrasov Periodic Table
1930   Gardner & Mazzucchelli's Periodic System Elaborated as Electronic Configuration


1930

Janet's Shell Filling Diagram

Janet produced six papers, in French, which are almost unobtainable as he had them privately printed and didn't distribute them properly. The shell-filling diagram dated from November 1930, six years before Madelung. Note that Janet uses Bohr's radial quantum number, k, which is l+1. In the text he formulates the n+k-1 rule. Information supplied by Philip Stewart.

Top of Page


1930

Nekrasov Periodic Table

From here, using Google Translate:

The shape of the table is presented by Bohr effect of considering the properties of the elements as simple substances and for reactions to occur with the intervention of such substances. But for the study of compounds and reactions that occur between them, the key factor is the electron configurations of atoms in states of valence to them on the given compounds.

It follows that a more complete picture of the periodic table would be when you take into account the peculiarities of atoms in both its neutral state and in all its particular valence states. This is the proposal of Boris Nekrasov, a member of the Academy of Sciences in Moscow.

Nekrasov distinguishes three types of analogies between elements Total analogs are those in which the analogy is shown in all its valence, all analogs compared to the valence valences except for the group corresponding to the number that can be called characteristic and analogous to the valence characteristic .

Thus, in the table shown here distinguish the elements entirely analogous joined by continuous lines, such as Na and K.

Those analogies in all except the characteristic valences joined by dotted lines. This is the case of Na and Cu in both cases if you lose an electron (valence feature) your setup is different. In the first case is 8 (1s2, 2P6) and the second 18 (3s2, 3p6, 3d10).

Lastly presenting exclusively analogies valence are connected with dashed lines. This is the case both S and Cr +6 elements have their valence electron configuration similar in the last layer 8 (2s2, 2p6) for the S and 8 (3s2, 3p6) for Cr.

The date 1930 is an educated guess:

Thanks to Eric Scerri for the tip!
See the website EricScerri.com and Eric's Twitter Feed.

Top of Page


1930

Gardner & Mazzucchelli's Periodic System Elaborated as Electronic Configuration

From Edward G. Mazurs' 1974 (2nd edition) Graphic Representations of the Periodic System During One Hundred Years, University of Alabama Press:

Gardner & Mazzucchelli

Thanks to Philip Stewart for the tip!

Top of Page



previous home next
What is the Periodic Table Showing? Periodicity

© Mark R. Leach Ph.D. 1999 –


Queries, Suggestions, Bugs, Errors, Typos...

If you have any:

Queries
Comments
Suggestions
Suggestions for links
Bug, typo or grammatical error reports about this page,

please contact Mark R. Leach, the author, using mark@meta-synthesis.com

This free, open access web book is an ongoing project and your input is appreciated.